【順序立てて考える力!】関数:早稲田大学系属早稲田実業学校高等部~全国入試問題解法 - 質問解決D.B.(データベース)

【順序立てて考える力!】関数:早稲田大学系属早稲田実業学校高等部~全国入試問題解法

問題文全文(内容文):
$y$は$x+2$に反比例し,$z+1$は$y$に比例する.
$x=4$のとき,$z=15$である.
$x=-6$のとき,$z$の値を求めよ.

早稲田実業高等部過去問
単元: #数学(中学生)#中2数学#1次関数#高校入試過去問(数学)
指導講師: 高校入試から見た数学の世界「全部入試問題」by しろたん
問題文全文(内容文):
$y$は$x+2$に反比例し,$z+1$は$y$に比例する.
$x=4$のとき,$z=15$である.
$x=-6$のとき,$z$の値を求めよ.

早稲田実業高等部過去問
投稿日:2022.07.31

<関連動画>

福田の一夜漬け数学〜相加平均・相乗平均の関係〜その証明の考察3(受験編)

アイキャッチ画像
単元: #中1数学#中2数学#中3数学#方程式#式の計算(単項式・多項式・式の四則計算)#式の計算(展開、因数分解)#平方根#数と式#式と証明#式の計算(整式・展開・因数分解)#一次不等式(不等式・絶対値のある方程式・不等式)#恒等式・等式・不等式の証明#文字と式
指導講師: 福田次郎
問題文全文(内容文):
${\Large\boxed{1}}$ $\displaystyle \frac{a+b+c+d}{4} \geqq \sqrt[4]{abcd}$ を既知として、$\displaystyle \frac{a+b+c}{3} \geqq \sqrt[3]{abc}$ を証明せよ。
ただし、a,b,c,dは全て正の数であるとする。

${\Large\boxed{2}}\ \boxed{1}$を利用して、n個の変数の相加・相乗平均の関係を証明せよ。
つまり、n個の正の数\ a_1,a_2,\cdot,a_nに対して
$\displaystyle \frac{a_1+a_2+\cdots+a_n}{n} \geqq \sqrt[n]{a_1a_2\cdots a_n}$
この動画を見る 

2021 桐朋 角度 B

アイキャッチ画像
単元: #数学(中学生)#中2数学#三角形と四角形#高校入試過去問(数学)
指導講師: 数学を数楽に
問題文全文(内容文):
$\angle PQR=?$
*図は動画内参照
2021桐朋高等学校
この動画を見る 

暗算できたらカッコいい

アイキャッチ画像
単元: #数学(中学生)#中2数学#式の計算(単項式・多項式・式の四則計算)#高校入試過去問(数学)
指導講師: 数学を数楽に
問題文全文(内容文):
$97^2+97 \times 6 +9=$
西武学園文理高等学校
この動画を見る 

【数学】中2-10 文字式の利用② 問題編

アイキャッチ画像
単元: #数学(中学生)#中2数学#式の計算(単項式・多項式・式の四則計算)
指導講師: とある男が授業をしてみた
問題文全文(内容文):
◎2つの奇数の和は偶数になることを説明しよう!!

【説明】
$m,n$を①____とすると、2つの奇数は
②____,③____と表される。
( ② )+( ③ )
=④____=⑤____
⑥____整数だから、
⑦____は⑧____。
よって、2つの奇数の和は偶数になる。

◎連続する3つの整数の和は3の倍数に
なることを説明しょう!!

【説明】
$n$を⑨____とすると、連続する3つの整数は、
⑩____,⑪____,⑫____と表される。
( ⑩ )+( ⑪ )+( ⑫ )
⑬____=⑭____
⑮____整数だから、
⑯____は⑰____。
よって、連続する3つの整数の和は3の倍数になる。
この動画を見る 

【案外戸惑う…!】整数:福岡大学付属大濠高等学校~全国入試問題解法

アイキャッチ画像
単元: #数学(中学生)#中2数学#1次関数#高校入試過去問(数学)#福岡大学附属大濠高等学校
指導講師: 高校入試から見た数学の世界「全部入試問題」by しろたん
問題文全文(内容文):
直線$ y=-\dfrac{1}{2}x+10 $上の点で
$ x $座標も$ y $座標も正の整数である点は全部で$ \Box $個ある.

福岡大学付属大濠高等学校過去問
この動画を見る 
PAGE TOP