福田の入試問題解説〜東京大学2022年理系第4問〜3次関数のグラフと直線の囲む2つの部分の面積 - 質問解決D.B.(データベース)

福田の入試問題解説〜東京大学2022年理系第4問〜3次関数のグラフと直線の囲む2つの部分の面積

問題文全文(内容文):
座標平面上の曲線
$C:y=x^3-x$
を考える。
(1)座標平面上の全ての点Pが次の条件$(\textrm{i})$を満たすことを示せ。
$(\textrm{i})$点Pを通る直線lで、曲線Cと相異なる3点で交わるものが存在する。
(2)次の条件$(\textrm{ii})$を満たす点Pのとりうる範囲を座標平面上に図示せよ。
$(\textrm{ii})$点Pを通る直線lで、曲線Cと相異なる3点で交わり、かつ、直線lと
曲線Cで囲まれた2つの部分の面積が等しくなるものが存在する。

2022東京大学理系過去問
単元: #数Ⅱ#大学入試過去問(数学)#指数関数と対数関数#指数関数#学校別大学入試過去問解説(数学)#東京大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
座標平面上の曲線
$C:y=x^3-x$
を考える。
(1)座標平面上の全ての点Pが次の条件$(\textrm{i})$を満たすことを示せ。
$(\textrm{i})$点Pを通る直線lで、曲線Cと相異なる3点で交わるものが存在する。
(2)次の条件$(\textrm{ii})$を満たす点Pのとりうる範囲を座標平面上に図示せよ。
$(\textrm{ii})$点Pを通る直線lで、曲線Cと相異なる3点で交わり、かつ、直線lと
曲線Cで囲まれた2つの部分の面積が等しくなるものが存在する。

2022東京大学理系過去問
投稿日:2022.02.28

<関連動画>

福田の共通テスト直前演習〜2021年共通テスト数学ⅡB問題1[2]。指数関数の問題。

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#指数関数と対数関数#指数関数#センター試験・共通テスト関連#共通テスト#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
${\Large\boxed{1}}$[2]二つの関数$f(x)=\frac{2^x+2^{-x}}{2}, g(x)=\frac{2^x-2^{-x}}{2}$について考える。
(1)$f(0)=\boxed{セ}, g(0)=\boxed{ソ}$である。また、$f(x)$は
相加平均と相乗平均の関係から、$x=\boxed{タ}$で最小値$\boxed{チ}$をとる。
$g(x)=-2$となるxの値は$\log_2(\sqrt{\boxed{ツ}}-\boxed{テ})$である。

(2)次の①~④は、xにどのような値を代入しても常に成り立つ。
$f(-x)=\boxed{ト} \ldots①  g(-x)=\boxed{ナ} \ldots②$
$\left\{f(-x)\right\}^2-\left\{g(-x)\right\}^2=\boxed{ニ} \ldots③$  
$g(2x)=\boxed{ヌ}\ f(x)g(x) \ldots④$

$\boxed{ト}、\boxed{ナ}$の解答群
⓪$f(x)$    ①$-f(x)$    ②$g(x)$    ③$-g(x)$

(3)花子:①~④は三角関数の性質に似ているね。
太郎:三角関数の加法定理に類似した式$(\textrm{A})~(\textrm{D})$を考えてみたけど、常に
成り立つ式はあるだろうか。
花子:成り立たない式を見つけるために、式$(\textrm{A})~(\textrm{D})$の$\beta$に
何か具体的な値を代入して調べてみたら?

太郎さんが考えた式
$f(\alpha-\beta)=f(\alpha)g(\beta)+g(\alpha)f(\beta) \ldots(\textrm{A})$ 
$f(\alpha+\beta)=f(\alpha)g(\beta)+g(\alpha)f(\beta) \ldots(\textrm{B})$
$f(\alpha-\beta)=f(\alpha)g(\beta)+g(\alpha)f(\beta) \ldots(\textrm{C})$ 
$f(\alpha+\beta)=f(\alpha)g(\beta)-g(\alpha)f(\beta) \ldots(\textrm{D})$

(1),(2)で示されたことのいくつかを利用すると、式$(\textrm{A})~(\textrm{D})$のうち、
$\boxed{ネ}$以外の3つは成り立たないことが分かる。$\boxed{ネ}$は左辺と右辺を
それぞれ計算することによって成り立つことが確かめられる。

$\boxed{ネ}$の解答群
⓪$(\textrm{A})$   ①$(\textrm{B})$   ②$(\textrm{C})$   ③$(\textrm{D})$

2021共通テスト数学過去問
この動画を見る 

福田の入試問題解説〜慶應義塾大学2022年医学部第4問〜4次関数の増減凹凸と曲線の長さ

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#指数関数と対数関数#指数関数#微分とその応用#関数の変化(グラフ・最大最小・方程式・不等式)#学校別大学入試過去問解説(数学)#慶應義塾大学#数学(高校生)#数Ⅲ
指導講師: 福田次郎
問題文全文(内容文):
座標平面上の点A(a,b)を1つ固定し、曲線$y=x^2$上の点P$(x,x^2)$と点A
との距離の2乗をg(x)とおく。関数$y=g(x)$のグラフが区間$(-\infty,\infty)$において下に凸
となるための条件は$b \leqq \boxed{\ \ ア\ \ }$となることである。$b \gt \boxed{\ \ ア\ \ }$のとき$y=g(x)$のグラフは
2つの変曲点をもち、そのx座標は$\boxed{\ \ イ\ \ }$及び$\boxed{\ \ ウ\ \ }$である。
ただし$\boxed{\ \ イ\ \ }\lt \boxed{\ \ ウ\ \ }$とする。また、関数$y=g(x)$が極小となるxがただ1つであるために
a,bが満たすべき条件を$b \leqq F(a)$と書くと、$F(a)=\boxed{\ \ エ\ \ }$ である。
$b= F(a)$のとき、関数$y=g(x)$は$x=\boxed{\ \ オ\ \ }$において最小値をとる。
さらに、連立不等式$x \geqq 0,\ y \geqq x^2$が表す領域をDとするとき、
曲線$y=F(x)$のDに含まれる部分の長さLを求めると、$L=\boxed{\ \ カ\ \ }$である。

2022慶應義塾大学医学部過去問
この動画を見る 

指数不等式

アイキャッチ画像
単元: #数Ⅱ#指数関数と対数関数#指数関数#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
$ \dfrac{9^x+4^x}{6^x-9^x} \geqq 5 $
これを解け.
この動画を見る 

大分大 指数 最小値

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#指数関数と対数関数#指数関数#学校別大学入試過去問解説(数学)#大分大学#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
$9^x+\displaystyle \frac{1}{9^x}-4a(3^x+\displaystyle \frac{1}{3^x})$の最小値とその時の$x$の値を求めよ

出典:2018年大分大学 過去問
この動画を見る 

指数関数 2次関数 大分大

アイキャッチ画像
単元: #数Ⅰ#数Ⅱ#2次関数#2次関数とグラフ#指数関数と対数関数#指数関数#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
$y=9^x+\dfrac{1}{9^x}-4a\left(3^x+\dfrac{1}{3^x}\right)$である.
$y$の最小値とそのときの$x$の値を$a$を用いて表せ.

2018大分大過去問
この動画を見る 
PAGE TOP