福田の数学〜筑波大学2022年理系第1問〜円と放物線の接線と面積 - 質問解決D.B.(データベース)

福田の数学〜筑波大学2022年理系第1問〜円と放物線の接線と面積

問題文全文(内容文):
\begin{eqnarray}
{\Large\boxed{1}}\ t,\ pを実数とし、t \gt 0とする。xy平面において、原点Oを中心とし点A(1,t)\\
を通る円をC_1とする。また、点AにおけるC_1の接線をlとする。直線x=p\\
を軸とする2次関数のグラフC_2は、x軸と接し、点Aにおいて直線lとも接するとする。\\
(1)直線lの方程式をtを用いて表せ。\\
(2)pをtを用いて表せ。\\
(3)C_2とx軸の接点をMとし、C_2とy軸の交点をNとする。tが正の実数全体を動くとき、\\
三角形OMNの面積の最小値を求めよ。
\end{eqnarray}
単元: #数Ⅱ#大学入試過去問(数学)#微分法と積分法#接線と増減表・最大値・最小値#学校別大学入試過去問解説(数学)#数学(高校生)#筑波大学
指導講師: 福田次郎
問題文全文(内容文):
\begin{eqnarray}
{\Large\boxed{1}}\ t,\ pを実数とし、t \gt 0とする。xy平面において、原点Oを中心とし点A(1,t)\\
を通る円をC_1とする。また、点AにおけるC_1の接線をlとする。直線x=p\\
を軸とする2次関数のグラフC_2は、x軸と接し、点Aにおいて直線lとも接するとする。\\
(1)直線lの方程式をtを用いて表せ。\\
(2)pをtを用いて表せ。\\
(3)C_2とx軸の接点をMとし、C_2とy軸の交点をNとする。tが正の実数全体を動くとき、\\
三角形OMNの面積の最小値を求めよ。
\end{eqnarray}
投稿日:2022.05.25

<関連動画>

【高校数学】むやみに代入するな!因数定理のちょっとした裏技! #Shorts

アイキャッチ画像
単元: #数Ⅱ#複素数と方程式#剰余の定理・因数定理・組み立て除法と高次方程式#数学(高校生)
指導講師: 数学・算数の楽しさを思い出した / Ken
問題文全文(内容文):
因数分解せよ。

$x^3+6x^2-6x+7$
この動画を見る 

福田のわかった数学〜高校2年生071〜三角関数(10)三角方程式の解の個数

アイキャッチ画像
単元: #数Ⅱ#三角関数#三角関数とグラフ#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
\begin{eqnarray}
数学\textrm{II} 三角関数(10) 解の個数\hspace{120pt}\\
\\
3\cos^2x-\sin x-a=0\hspace{100pt}\\
の0 \leqq x \leqq \frac{3\pi}{2}の範囲にある解の個数を、実数aの値によって分類せよ。
\end{eqnarray}
この動画を見る 

指数・対数 × 整数問題!落としたくない問題です【大阪大学】【数学 入試問題】

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#指数関数と対数関数#学校別大学入試過去問解説(数学)#大阪大学#数学(高校生)
指導講師: 数学・算数の楽しさを思い出した / Ken
問題文全文(内容文):
連立方程式$\begin{eqnarray}
\left\{
\begin{array}{l}
2^x+3^y=43 \\
\log_{ 2 } x-\log_{ 3 } y=1
\end{array}
\right.
\end{eqnarray}$を考える。

(1)この連立方程式を満たす自然数$x,y$の組を求めよ。
(2)この連立方程式を満たす正の実数$x,y$は、(1)で求めた自然数の組以外に存在しないことを示せ。
この動画を見る 

【数Ⅱ】図形と方程式:x²+y²+4x-6y+13=0はどのような図形を表しているでしょう?

アイキャッチ画像
単元: #数Ⅱ#図形と方程式#円と方程式#数学(高校生)
教材: #高校ゼミスタンダード#高校ゼミスタンダード数Ⅱ#その他(中高教材)
指導講師: 理数個別チャンネル
問題文全文(内容文):
x²+y²+4x-6y+13=0はどのような図形を表しているか?
この動画を見る 

福田の数学〜一橋大学2022年文系第2問〜平面上の三角形の面積の最大値

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#三角関数#加法定理とその応用#学校別大学入試過去問解説(数学)#一橋大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
\begin{eqnarray}
{\Large\boxed{2}}\ 0 \leqq \theta \lt 2\piとする。座標平面上の3点O(0,0), P(\cos\theta,\sin\theta), Q(1,3\sin2\theta)\\
が三角形をなすとき、\triangle OPQの面積の最大値を求めよ。
\end{eqnarray}
この動画を見る 
PAGE TOP