【日本最速解答速報】2024年明治薬科大学薬学部薬学科(6年制)公募制推薦 英語解答速報【YAKISOBA先生】 - 質問解決D.B.(データベース)

【日本最速解答速報】2024年明治薬科大学薬学部薬学科(6年制)公募制推薦 英語解答速報【YAKISOBA先生】

問題文全文(内容文):
大学の正解発表ではなく、あくまで当チャンネルの講師が独自に解説をしているものですので、万が一内容に間違いがございましたらご容赦ください。
チャプター:

0:00 Ⅰ概観
0:23 Ⅰ(1)
1:12 Ⅰ(2)
3:01 Ⅰ(3)
3:13 Ⅰ(4)
4:38 Ⅰ(6)
6:21 Ⅰ(5)
6:58 Ⅰ(7)
7:20 Ⅰ(8)
7:58 Ⅰ(9)
8:28 Ⅰ(10)
8:54 Ⅰ(11)
9:24 Ⅰ解答
9:45 Ⅱ概観
10:08 Ⅱ (1)
10:59 Ⅱ (1)
11:23 Ⅱ (3)
13:13 Ⅱ (4)
14:14 Ⅱ (5)
14:35 Ⅱ解答
14:51 Ⅲ(1)
15:18 Ⅲ(2)
15:47 Ⅲ(3)
16:49 Ⅲ(4)
17:03 Ⅲ(5)
17:27 Ⅲ(6)
17:39 Ⅲ(7)
18:35 Ⅲ(8)
18:56 Ⅲ解答

単元: #大学入試過去問(数学)#学校別大学入試過去問解説(数学)#数学(高校生)
指導講師: 理数個別チャンネル
問題文全文(内容文):
大学の正解発表ではなく、あくまで当チャンネルの講師が独自に解説をしているものですので、万が一内容に間違いがございましたらご容赦ください。
投稿日:2023.11.24

<関連動画>

琉球大 微分・積分 Mathematics Japanese university entrance exam

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#微分法と積分法#接線と増減表・最大値・最小値#学校別大学入試過去問解説(数学)#面積、体積#数学(高校生)#琉球大学
指導講師: 鈴木貫太郎
問題文全文(内容文):
琉球大学過去問題
-2<a<2
$y=x^2+ax+1$に原点から引いた2本の接線の接点をP,Qとする。
(1)2つの接点P,Qの座標を求めよ。
(2)2本の接線と放物線で囲まれた図形の面積
この動画を見る 

北海道大学(1970) #定積分 #Shorts

アイキャッチ画像
単元: #大学入試過去問(数学)#学校別大学入試過去問解説(数学)#数学(高校生)#北海道大学
指導講師: ますただ
問題文全文(内容文):
$\displaystyle \lim_{ n \to \infty } \displaystyle \sum_{k=0}^{n-1} \displaystyle \frac{1}{\sqrt{ 4n^2-k^2 }}$

出典:1970年北海道大学
この動画を見る 

早稲田大 指数 関数最小値 Mathematics Japanese university entrance exam

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#指数関数と対数関数#微分法と積分法#指数関数#学校別大学入試過去問解説(数学)#早稲田大学#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
$f(x)=8^x+8^{-x}-4(4^x+4^{-x})$の最小値とそのときの$x$

出典:2009年早稲田大学 過去問
この動画を見る 

福田の数学〜北海道大学2023年文系第2問〜角の2等分線の位置ベクトル

アイキャッチ画像
単元: #大学入試過去問(数学)#平面上のベクトル#平面上のベクトルと内積#学校別大学入試過去問解説(数学)#数学(高校生)#北海道大学#数C
指導講師: 福田次郎
問題文全文(内容文):
$\Large\boxed{2}$ 三角形OABは辺の長さがOA=3, OB=5, AB=7であるとする。また、$\angle$AOBの2等分線と直線ABとの交点をPとし、頂点Bにおける外角の2等分線と直線OPとの交点をQとする。
(1)$\overrightarrow{ OP }$を$\overrightarrow{ OA }$, $\overrightarrow{ OB }$を用いて表せ。また、|$\overrightarrow{ OP }$|の値を求めよ。
(2)$\overrightarrow{ OQ }$を$\overrightarrow{ OA }$, $\overrightarrow{ OB }$を用いて表せ。また、|$\overrightarrow{ OQ }$|の値を求めよ。

2023北海道大学文系過去問
この動画を見る 

2023年京大の漸化式!典型的なパターンが詰まった問題です【京都大学】【数学 入試問題】

アイキャッチ画像
単元: #大学入試過去問(数学)#数列#漸化式#学校別大学入試過去問解説(数学)#京都大学#数学(高校生)
指導講師: 数学・算数の楽しさを思い出した / Ken
問題文全文(内容文):
{${ a_n}$}は次の条件を満たしている。

${ a_1}=3$、${ a_n}=\displaystyle \frac{{ S_n}}{n}+(n-1)・2^{n}(n=2,3,4…)$

ただし,${ S_n}={ a_1}+{ a_2}+・・・+{ a_n}$である。このとき、数列{${ a_n}$}の一般項を求めよ。

京都大過去問
この動画を見る 
PAGE TOP