15神奈川県教員採用試験(数学:1番 整数問題) - 質問解決D.B.(データベース)

15神奈川県教員採用試験(数学:1番 整数問題)

問題文全文(内容文):
1⃣ xy-2x-y=10をみたす自然数x,yでx+yの最大値
単元: #数Ⅰ#数と式#式の計算(整式・展開・因数分解)#数学(高校生)
指導講師: ますただ
問題文全文(内容文):
1⃣ xy-2x-y=10をみたす自然数x,yでx+yの最大値
投稿日:2020.08.19

<関連動画>

一度はみんな間違える変域 国分寺高校

アイキャッチ画像
単元: #数学(中学生)#数Ⅰ#数と式#一次不等式(不等式・絶対値のある方程式・不等式)#高校入試過去問(数学)#数学(高校生)
指導講師: 数学を数楽に
問題文全文(内容文):
$y=ax^2$について$-4 \leqq x \leqq 2$のとき$b \leqq y \leqq 8$であった。
a=? b=?

国分寺高等学校
この動画を見る 

福田の共通テスト解答速報〜2022年共通テスト数学IA問題2[1]。2次方程式、2次関数、必要十分条件の問題。

アイキャッチ画像
単元: #数Ⅰ#大学入試過去問(数学)#数と式#2次関数#集合と命題(集合・命題と条件・背理法)#2次方程式と2次不等式#センター試験・共通テスト関連#共通テスト#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
第2問\ [1] p,qを実数とする。
花子さんと太郎さんは、次の二つの2次方程式について考えている。
$x^2+px+q=0 \ldots①$
$x^2+qx+p=0 \ldots②$
①または②を満たす実数xの個数をnとおく。

(1)$p=4,q=-4$のとき、$n=\boxed{ア}$である。
また、$p=1,q=-2$のとき、$n=\boxed{イ}$である。
(2)$p=-6$のとき、$n=3$になる場合を考える。

花子:例えば、①と②を共に満たす実数xがあるときは$n=3$に
なりそうだね。
太郎:それを$\alpha$としたら、$\alpha^2-6\alpha+q=0と\alpha^2+q\alpha-6=0$が
成り立つよ。
花子:なるほど。それならば、$\alpha^2$を消去すれば、$\alpha$の値が求められそうだね。
太郎:確かに$\alpha$の値が求まるけど、実際に$n=3$となっているか
どうかの確認が必要だね。
花子:これ以外にも$n=3$となる場合がありそうだね。

$n=3$となるqの値は
$q=\boxed{ウ}, \boxed{エ}$
である。ただし、$\boxed{ウ} \lt \boxed{エ}$とする。

$p=-6$に固定したまま、qの値だけを変化させる。
$y=x^2-6x+q \ldots③$
$y=x^2+qx-6 \ldots④$

(1)この二つのグラフについて、$q=1$のときのグラフを点線で、
qの値を1から増加させたときのグラフを実線でそれぞれ表す。
このとき、③のグラフの移動の様子を示すと$\boxed{オ}$となり、
④のグラフの移動の様子を示すと$\boxed{カ}$となる。

$\boxed{オ}, \boxed{カ}$については、最も適当なものを、次の⓪~⑦
のうちから一つずつ選べ。ただし、同じものを繰り返し選んでもよい。
なお、x軸とy軸は省略しているが、x軸は右方向、
y軸は上方向がそれぞれ正の方向である。
(※選択肢は動画参照)

(4)$\boxed{ウ} \lt q \lt \boxed{エ}$とする。全体集合Uを実数全体の集合とし、
Uの部分集合A,Bを

$A=\left\{x\ |\ x^2-6x+q \lt 0 \right\}$
$B=\left\{x\ |\ x^2+qx-6 \lt 0 \right\}$

とする。Uの部分集合Xに対し、Xの補集合を$\bar{ X }$と表す。このとき、
次のことが成り立つ。

・$x \in A$は、$x \in B$であるための$\boxed{キ}$。
・$x \in B$は、$x \in \bar{ A }$であるための$\boxed{ク}$。

$\boxed{キ}, \boxed{ク}$の解答群(同じものを繰り返し選んでもよい。)
⓪必要条件であるが、十分条件ではない
①十分条件であるが、必要条件ではない
②必要十分条件である
③必要条件でも十分条件でもない

2022共通テスト数学過去問
この動画を見る 

福田の数学〜北海道大学2025文系第2問〜数え上げと余弦定理

アイキャッチ画像
単元: #数Ⅰ#大学入試過去問(数学)#図形と計量#三角比への応用(正弦・余弦・面積)#学校別大学入試過去問解説(数学)#数学(高校生)#北海道大学
指導講師: 福田次郎
問題文全文(内容文):

$\boxed{2}$

整数$a,b,c$は条件

$2\leqq a \lt b \lt c \leqq 6$を満たすとする。

(1)不等式$a+b\gt c$を満たすような

$(a+b+c)$をすべて挙げよ。

(2)不等式$a^2+b^2\geqq c^2$を満たすような

$(a+b+c)$をすべて挙げよ。

(3) (2)で求めた$(a,b,c)$について、

頂点$A,B,C$と向かい合う辺の長さがそれぞれ

$a,b,c$で与えられる$\triangle ABC$を考える。

このようなすべての$\triangle ABC$について

$\cos \angle ACB$を求めよ。

$2025$年北海道大学文系過去問題
この動画を見る 

以上未満の覚え方~とんとんと先生の教え方の違い~

アイキャッチ画像
単元: #算数(中学受験)#計算と数の性質#数の性質その他#数Ⅰ#数と式#一次不等式(不等式・絶対値のある方程式・不等式)#数学(高校生)
指導講師: 【楽しい授業動画】あきとんとん
問題文全文(内容文):
以上未満の覚え方
この動画を見る 

最大値=❓ 分数関数 (高校数学)

アイキャッチ画像
単元: #数Ⅰ#2次関数#2次関数とグラフ#数学(高校生)
指導講師: 数学を数楽に
問題文全文(内容文):
次の$y$の最大値を求めよ
$\displaystyle y=\frac{1}{x^2-4x+6}$
この動画を見る 
PAGE TOP