【数学】中2-39 一次関数の利用② 水槽の基本編 - 質問解決D.B.(データベース)

【数学】中2-39 一次関数の利用② 水槽の基本編

問題文全文(内容文):
◎20L入る水槽に、水が2L入っていてここに満水になるまで、毎分3Lの割合 で水を入れる。
水を入れ始めてからX分後の水の量をYLとする。

①yをxの式で表すと?

②xの変域は?

③yの変域は?

④3分後の水の量は何L?

◎深さが50cmの水槽に水が満水になっている。
ここから、毎分2cmずつ水を減らしていく。
水を入れ始めてからX分後の水槽の底からの水位をycmとする。

⑤yをxの式で表すと?

⑥xの変域は?

⑦yの変域は?

⑧底からの水位が16cmになるのは 何分後?
単元: #数学(中学生)#中2数学#1次関数
指導講師: とある男が授業をしてみた
問題文全文(内容文):
◎20L入る水槽に、水が2L入っていてここに満水になるまで、毎分3Lの割合 で水を入れる。
水を入れ始めてからX分後の水の量をYLとする。

①yをxの式で表すと?

②xの変域は?

③yの変域は?

④3分後の水の量は何L?

◎深さが50cmの水槽に水が満水になっている。
ここから、毎分2cmずつ水を減らしていく。
水を入れ始めてからX分後の水槽の底からの水位をycmとする。

⑤yをxの式で表すと?

⑥xの変域は?

⑦yの変域は?

⑧底からの水位が16cmになるのは 何分後?
投稿日:2013.07.26

<関連動画>

【高校受験対策/数学】死守-89

アイキャッチ画像
単元: #数学(中学生)#中1数学#正の数・負の数#式の計算(展開、因数分解)#平方根#空間図形#確率#2次関数#円#文字と式#平面図形
指導講師: とある男が授業をしてみた
問題文全文(内容文):
高校受験対策・死守89

①$-3-(-7)$を計算しなさい。

②$8-(-3)^2$を計算しなさい。

③$(-9ab^2)×2a÷(-3ab)$を計算しなさい。

④$(\sqrt{7}+\sqrt{5})(\sqrt{7}-\sqrt{5})$を計算しなさい。

⑤$x^2-3x-18$を因数分解しなさい。

⑥絶対値が$4$より小さい整数の個数を求めなさい。

⑦右の図のア~ウは、関数$y=-2x^2、y=x^2$および$y=\frac{1}{2}x^2$のグラフを同じ座標軸を使ってかいたものです。
$y=x^2$のグラフをア~ウから一つ選びなさい。

⑧右の図のような、半径$5cm$、中心角$90°$のおうぎ形$OAB$があります。
このおうぎ形を直線$OA$を回転の軸として1回転させてできる立体の体積を求めなさい。

⑨大小2つのさいころを同時に投げるとき、出る目の数の和がちょうど$5$以下となる確率を求めなさい。
ただしさいころの$1$から$6$までの目の出方は同様に確からしいものとします。

この動画を見る 

【テスト対策 中2】5章-3

アイキャッチ画像
単元: #数学(中学生)#中2数学#三角形と四角形
指導講師: とある男が授業をしてみた
問題文全文(内容文):
$\angle x$の大きさを求めなさい。

①$AD=CD,CD$は$\angle ACB$の二等分線

②$ABCD$は平行四辺形、$BE=CE$

③$ABCD$はひし形、$AD=AE$

④$CD=CE$
$BFC=90°$

図は動画内参照
この動画を見る 

【高校受験対策】数学-図形21/前編

アイキャッチ画像
単元: #数学(中学生)#中2数学#平行と合同
指導講師: とある男が授業をしてみた
問題文全文(内容文):
高校受験対策・図形21

Q.
右の図のような、$AB<AD$の長方形$ABCD$があります。 点$P$は対角線$BD$上の点で、$AP=AB$です。また点$Q$は辺$AD$上の点で、$∠APQ=90°$です。
このとき、次の各問に答えなさい。

①$△APQ$と$△CDQ$が合同であることを証明しなさい。

②$\angle PAQ=52°$のとき$\angle PQC$の大きさを求めなさい。

③$△ABP$の面積が$24cm^2$、$△PDQ$の面積が$25cm^2$のとき、 長方形$ABCD$の面積を求めなさい。
この動画を見る 

連立方程式:立命館高校入試~全国入試問題解法

アイキャッチ画像
単元: #数学(中学生)#中2数学#連立方程式#高校入試過去問(数学)#立命館高等学校
指導講師: 高校入試から見た数学の世界「全部入試問題」by しろたん
問題文全文(内容文):
入試問題 立命館高等学校

次の連立方程式を解きなさい。
$\displaystyle \frac{x+3y}{2}=\displaystyle \frac{2x+6y+2}{3}=-\displaystyle \frac{2}{5}(4x+5y)$
この動画を見る 

【高校受験対策/数学】死守53

アイキャッチ画像
単元: #数学(中学生)#中1数学#中2数学#中3数学#正の数・負の数#式の計算(単項式・多項式・式の四則計算)#連立方程式#式の計算(展開、因数分解)#平方根#2次方程式#文字と式
指導講師: とある男が授業をしてみた
問題文全文(内容文):
高校受験対策・死守53

①$2-(-9)$を計算せよ。

②$52a^2b \div (-4a)$を計算せよ。

③$\sqrt{28}+\frac{49}{\sqrt{7}}$を計算せよ。

④$\frac{3x-y}{3}-\frac{x-2y}{4}$を計算せよ。

⑤$(\sqrt{2}+1)^2-5({\sqrt{2}+1)}+4$を計算せよ。

⑥2次方程式$x^2-5x-3=0$を解きなさい。

⑦関数$y=-\frac{1}{3}x^2$について、$x$の値が$3$から$6$まで増加するときの変化の割合を求めなさい。

⑧連立方程式
$ax+by=10$
$bx-ay=5$
の解が$x=2$、$y=1$であるとき$a$、$b$の値を求めなさい。

⑨ある動物園では、大人1人の入園料が子ども1人の入園料より600円高い。
大人1人の入園料と子ども 1人の入園料の比が$5:2$であるとき、子ども1人の入園料を求めなさい。

⑩$\frac{5880}{n}$が自然数の平方となるような、最も小さい自然数$n$の値を求めなさい。
この動画を見る 
PAGE TOP