【数I】中高一貫校用問題集(数式・関数編)数と式:多項式:次の式を展開しよう。(a-b)(a+b)(a²+ab+b²)(a²-ab+b²) - 質問解決D.B.(データベース)

【数I】中高一貫校用問題集(数式・関数編)数と式:多項式:次の式を展開しよう。(a-b)(a+b)(a²+ab+b²)(a²-ab+b²)

問題文全文(内容文):
次の式を展開しよう。
$(a-b)(a+b)(a^2+ab+b^2)(a^2-ab+b^2)$
チャプター:

0:00 オープニング
0:05 問題文
0:13 3乗の因数分解を利用
1:44 名言

単元: #数学(中学生)#中2数学#式の計算(単項式・多項式・式の四則計算)#数Ⅰ#数と式#数学(高校生)
指導講師: 理数個別チャンネル
問題文全文(内容文):
次の式を展開しよう。
$(a-b)(a+b)(a^2+ab+b^2)(a^2-ab+b^2)$
投稿日:2021.05.11

<関連動画>

【高校受験対策】数学-死守13

アイキャッチ画像
単元: #数学(中学生)#中2数学#中3数学#式の計算(単項式・多項式・式の四則計算)#連立方程式#2次方程式#確率#円#立体図形#立体図形その他#三角形と四角形
指導講師: とある男が授業をしてみた
問題文全文(内容文):
次の各問いに答えなさい.

①$3-(-2)$を計算しなさい.

②$(-3)^2+5\times (-1)$を計算しなさい.

③$(2x^2-5x)-(3x^2-2x)$を計算しなさい.

④$(-4a^2)\times 18b \div 9ab$を計算しなさい.

⑤$(\sqrt3 + 1)^2$を計算しなさい.

⑥$x$に$-3$をかけて$5$をひいた数は$7$より小さい.
この数量の関係を不等式で表しなさい.

⑦次の連立方程式を解きなさい.
$3x+4y=x+y=2$

⑧2次方程式$(x-2)^2=81$を解きなさい.

⑨右の図で,$y$が$x$に比例するとき,
(ア)にあてはまる数を求めなさい.

⑩$1,2,3,4$の数字が書かれた4枚のカードが袋の中に入っている.
このカードを2枚同時に取り出すとき,
袋の中に残っているカードに書かれている数の和が,
取り出したカードに書かれている数の和より大きくなる確率を求めなさい.

⑪右上の図1は,底面の半径が$6cm$,母線の長さが$30cm$の円すいである.
この円すいの展開図をかいたとき,側面になるおうぎ形の中心角を求めなさい.

⑫右の図2の平行四辺形$ABCD$で,
$AB,BC$上にそれぞれ点$E,F$をとる.
$AC /\!/ EF$のとき,$△ACE$と面積が等しい三角形を3つ書きなさい.

図は動画内を参照
この動画を見る 

【アルキメデスの思考法…!】整数:百合学院高等学校~全国入試問題解法

アイキャッチ画像
単元: #数学(中学生)#中2数学#式の計算(単項式・多項式・式の四則計算)
指導講師: 高校入試から見た数学の世界「全部入試問題」by しろたん
問題文全文(内容文):
1=1²,1+3=2²,1+3+5=3²,1+3+5+7=4².1+3+5+7+9=5² …これを利用して、(1)1+3+5+…+17+19は何の2乗か。(2)1+3+5+…+[ ]=40² [ ]に入る数は?
この動画を見る 

丸暗記するな

アイキャッチ画像
単元: #数学(中学生)#中2数学#式の計算(単項式・多項式・式の四則計算)
指導講師: 数学を数楽に
問題文全文(内容文):
式の展開
$(a+b)^2 = a^2+2ab+b^2$

$(a-b)^2 = a^2-2ab+b^2$
この動画を見る 

キレイな答え

アイキャッチ画像
単元: #数学(中学生)#中2数学#式の計算(単項式・多項式・式の四則計算)#高校入試過去問(数学)
指導講師: 数学を数楽に
問題文全文(内容文):
$2015 \times 98 - 2014 \times 99 +2016$

関西大学第一高等学校
この動画を見る 

中2数学「同類項・式の加法と減法」【毎日配信】

アイキャッチ画像
単元: #数学(中学生)#中2数学#式の計算(単項式・多項式・式の四則計算)
指導講師: 中学受験算数・高校受験数学けいたくチャンネル
問題文全文(内容文):
例1
次の計算をしなさい.

(1)$4a-3b-a+5b$
(2)$x^2-3x+2x^2+5x$
(3)$3ab-2a-ab+a$
(4)$\dfrac{x}{6}+\dfrac{y}{3}+\dfrac{y}{4}-\dfrac{x}{9}$

例2
(1)$(4x-y)+(x+5y)$
(2)$(3x+7y)-(2x-5y)$
(3)$(2x^2+5x-1)-(3-4x^2+x)$
(4)
$\begin{array}{r}
3x-2y \\[0.5pt]
\underline{+\phantom{0}2x+5y}\\[-3pt]
\\[-3pt]
\end{array}$

(5)
$\begin{array}{r}
-2x+5y-4 \\[0.5pt]
\underline{-\phantom{0}-5x-3y+6}\\[-3pt]
\\[-3pt]
\end{array}$
この動画を見る 
PAGE TOP