大学入試問題#193 東海大学医学部 定積分 - 質問解決D.B.(データベース)

大学入試問題#193 東海大学医学部 定積分

問題文全文(内容文):
$\displaystyle \int_{0}^{\pi}\ x\ \cos^2x\ \sin\ x\ dx$を求めよ。

出典:東海大学医学部 入試問題
単元: #大学入試過去問(数学)#積分とその応用#定積分#学校別大学入試過去問解説(数学)#数学(高校生)#数Ⅲ#東海大学
指導講師: ますただ
問題文全文(内容文):
$\displaystyle \int_{0}^{\pi}\ x\ \cos^2x\ \sin\ x\ dx$を求めよ。

出典:東海大学医学部 入試問題
投稿日:2022.05.09

<関連動画>

大学入試問題#75 横浜国立大学(2006) 部分積分

アイキャッチ画像
単元: #大学入試過去問(数学)#積分とその応用#定積分#学校別大学入試過去問解説(数学)#横浜国立大学#数Ⅲ
指導講師: ますただ
問題文全文(内容文):
$\displaystyle \int_{1}^{e}x(log\ x)^2dx$を計算せよ。

出典:2006年横浜国立大学 入試問題
この動画を見る 

福田の数学〜早稲田大学2022年人間科学部第6問〜楕円を軸以外の直線で回転させた立体の体積

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#平面上の曲線#微分法と積分法#接線と増減表・最大値・最小値#微分とその応用#積分とその応用#2次曲線#関数の変化(グラフ・最大最小・方程式・不等式)#定積分#面積・体積・長さ・速度#学校別大学入試過去問解説(数学)#早稲田大学#数学(高校生)#数C#数Ⅲ
指導講師: 福田次郎
問題文全文(内容文):
${\large\boxed{6}}$直線$x+y=1$に接する楕円$\frac{x^2}{a^2}+\frac{y^2}{b^2}=1(a \gt 0,\ b \gt 0)$がある。
このとき、$b^2=\boxed{\ \ ア\ \ }\ a^2+\boxed{\ \ イ\ \ }$である。
この楕円を直線$y=b$のまわりに1回転してできる立体の体積は、
$a=\frac{\sqrt{\boxed{\ \ ウ\ \ }}}{\boxed{\ \ エ\ \ }}$のとき、
最大値$\frac{\boxed{\ \ オ\ \ }\sqrt{\boxed{\ \ カ\ \ }}}{\boxed{\ \ キ\ \ }}\pi^2$をとる。

2022早稲田大学人間科学部過去問
この動画を見る 

大学入試問題#521「部分積分もあるかもしれない」 信州大学(2004) #定積分

アイキャッチ画像
単元: #大学入試過去問(数学)#積分とその応用#定積分#学校別大学入試過去問解説(数学)#数学(高校生)#信州大学#数Ⅲ
指導講師: ますただ
問題文全文(内容文):
$\displaystyle \int_{1}^{2} (x+2)\sqrt{ 4-x^2 }\ dx$

出典:2004年信州大学 入試問題
この動画を見る 

大学入試問題#197 明治大学(改) 定積分

アイキャッチ画像
単元: #大学入試過去問(数学)#積分とその応用#定積分#学校別大学入試過去問解説(数学)#明治大学#数学(高校生)#数Ⅲ
指導講師: ますただ
問題文全文(内容文):
$\displaystyle \int_{0}^{1}\displaystyle \frac{e^{2x}-1}{e^{2x}+1}\ dx$

出典:明治大学 入試問題
この動画を見る 

大学入試問題#480「計算量が多いのかもしれません」  山形大学(2016) #微積の応用②

アイキャッチ画像
単元: #積分とその応用#定積分#数学(高校生)#数Ⅲ
指導講師: ますただ
問題文全文(内容文):
$f(x)$微分可能な関数
$e^{-x}f(x)+\displaystyle \int_{0}^{x} e^{-t}f(t)dt=1+e^{-2x}(3\ \sin\ x-\cos\ x)$を満たす$f(x)$を求めよ

出典:2016年山形大学 入試問題
この動画を見る 
PAGE TOP