福田の数学〜(2)から先行きが怪しくなってくる〜慶應義塾大学2023年経済学部第4問〜対数関数の最大 - 質問解決D.B.(データベース)

福田の数学〜(2)から先行きが怪しくなってくる〜慶應義塾大学2023年経済学部第4問〜対数関数の最大

問題文全文(内容文):
x,yを正の実数とし、$2\log_{ 2 } x+\log_{ 2 } y$とする。また、kを正の実数とする。
(1)x,yがx+y=kまたは、kx+y=2Kを満たすとする。このとき、zの取りうる値の最大値$z_1$及びその時のxの値を、Kを用いて表せ。
(2)x,yはx+y=KまたはKx+y=2Kを満たすとする。このとき、zの取りうる値の最大値$z_2$が(1)の$z_1$と一致するための必要十分条件を求めよ。
(3)nを自然数とし、$K=2^\frac{n}{5}$とする。(2)の$z_2$について、$\dfrac{3}{2} \lt z_2 \lt dfrac{7}{2}$を満たす。
nの最大値および最小値を求めよ。必要があれば$1.58 \lt log_{2}3 \lt 1.59$を用いよ。
単元: #数Ⅱ#大学入試過去問(数学)#指数関数と対数関数#対数関数#学校別大学入試過去問解説(数学)#慶應義塾大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
x,yを正の実数とし、$2\log_{ 2 } x+\log_{ 2 } y$とする。また、kを正の実数とする。
(1)x,yがx+y=kまたは、kx+y=2Kを満たすとする。このとき、zの取りうる値の最大値$z_1$及びその時のxの値を、Kを用いて表せ。
(2)x,yはx+y=KまたはKx+y=2Kを満たすとする。このとき、zの取りうる値の最大値$z_2$が(1)の$z_1$と一致するための必要十分条件を求めよ。
(3)nを自然数とし、$K=2^\frac{n}{5}$とする。(2)の$z_2$について、$\dfrac{3}{2} \lt z_2 \lt dfrac{7}{2}$を満たす。
nの最大値および最小値を求めよ。必要があれば$1.58 \lt log_{2}3 \lt 1.59$を用いよ。
投稿日:2023.11.21

<関連動画>

対数の良問!値を上手く自分で評価できるかがポイント【大阪大学】【数学 入試問題】

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#指数関数と対数関数#対数関数#学校別大学入試過去問解説(数学)#大阪大学#数学(高校生)
指導講師: 数学・算数の楽しさを思い出した / Ken
問題文全文(内容文):
自然数m,nと0<a\dfrac{2}{3}$が成り立つことを示せ。
この動画を見る 

どっちがでかい?かなりの大差じゃね?

アイキャッチ画像
単元: #数Ⅱ#指数関数と対数関数#対数関数#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
どちらが大きい??
この動画を見る 

【数Ⅱ】指数対数・対数関数:実数のlog乗の解き方

アイキャッチ画像
単元: #数Ⅱ#指数関数と対数関数#対数関数#数学(高校生)
教材: #4S数学#4S数学Ⅱ+B(旧課程2021年以前)
指導講師: 理数個別チャンネル
問題文全文(内容文):
(1)5の(log₅7乗)を求めよ。
(2)36の(log₆√5乗)を求めよ。
※( )内のlogがそれぞれ累乗の位置に来ています。
この動画を見る 

早稲田(社)対数の基本

アイキャッチ画像
単元: #数Ⅱ#指数関数と対数関数#対数関数#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
$ \log_{10}2=0.3030,\log_{10}3=0.4771,\log_{10}7=0.8451,7^{70}の上2桁の数を求めよ.$
この動画を見る 

共通テスト2021年数学詳しい解説〜共通テスト2021年2B第1問〜三角関数、指数関数

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#三角関数#指数関数と対数関数#三角関数とグラフ#加法定理とその応用#指数関数#対数関数#センター試験・共通テスト関連#共通テスト#センター試験#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
\begin{eqnarray}
{\large第1問}\\
[1](1)次の問題Aについて考えよう。\\
\boxed{\boxed{問題A} 関数y=\sin\theta+\sqrt3\cos\theta\left(0 \leqq \theta \leqq \frac{\pi}{2}\right)の最大値を求めよ。}\\
\\
\sin\frac{\pi}{\boxed{\ \ ア\ \ }}=\frac{\sqrt3}{2}, \cos\frac{\pi}{\boxed{\ \ ア\ \ }}=\frac{1}{2}\\
であるから、三角関数の合成により\\
\\
y=\boxed{\ \ イ\ \ }\sin\left(\theta+\frac{\pi}{\boxed{\ \ ア\ \ }}\right)\\
\\
と変形できる。よって、yは\theta=\frac{\pi}{\boxed{\ \ ウ\ \ }}で最大値\ \boxed{\ \ エ\ \ }\ をとる。\\
\\
(2)pを定数とし、次の問題Bについて考えよう。\\
\boxed{\boxed{問題B} 関数y=\sin\theta+p\cos\theta\left(0 \leqq \theta \leqq \frac{\pi}{2}\right)の最大値を求めよ。}\\
\\
(\textrm{i}) p=0のとき、yは\theta=\frac{\pi}{\boxed{\ \ オ\ \ }}で最大値\ \boxed{\ \ カ\ \ }\ をとる。\\
(\textrm{ii}) p \gt 0のときは、加法定理\\
\cos(\theta-\alpha)=\cos\theta\cos\alpha+\sin\theta\sin\alpha\\
を用いると\\
y=\sin\theta+p\cos\theta=\sqrt{\boxed{\boxed{\ \ キ\ \ }}}\cos(\theta-\alpha)\\
と表すことができる。ただし、\alphaは\\
\sin\alpha=\frac{\boxed{\boxed{\ \ ク\ \ }}}{\sqrt{\boxed{\boxed{\ \ キ\ \ }}}}、\cos\alpha=\frac{\boxed{\boxed{\ \ ケ\ \ }}}{\sqrt{\boxed{\boxed{\ \ キ\ \ }}}}、0 \lt \alpha \lt \frac{\pi}{2}\\
を満たすものとする。このとき、yは\theta=\boxed{\boxed{\ \ コ\ \ }}で最大値\\
\sqrt{\boxed{\boxed{\ \ サ\ \ }}}をとる。\\
\\
(\textrm{iii}) p \lt 0のとき、yは\theta=\boxed{\boxed{\ \ シ\ \ }}で最大値\boxed{\boxed{\ \ ス\ \ }}をとる。\\
\\
\boxed{\boxed{\ \ キ\ \ }}~\boxed{\boxed{\ \ ケ\ \ }}、\boxed{\boxed{\ \ サ\ \ }}、\boxed{\boxed{\ \ ス\ \ }}の解答群(同じものを繰り返\\
し選んでもよい。)\\
⓪-1 ①1 ②-p \\
③p ④1-p ⑤1+p \\
⑥-p^2 ⑦p^2 ⑧1-p^2 \\
⑨1+p^2 ⓐ(1-p)^2 ⓑ(1+p)^2 \\
\\
\\
\boxed{\boxed{\ \ コ\ \ }}、\boxed{\boxed{\ \ シ\ \ }}の解答群(同じものを繰り返し選んでもよい。)\\
⓪0 ①\alpha ②\frac{\pi}{2} \\
\\
\\
[2]二つの関数f(x)=\frac{2^x+2^{-x}}{2}、g(x)=\frac{2^x-2^{-x}}{2}\ について考える。\\
\\
(1)f(0)=\boxed{\ \ セ\ \ }、g(0)=\boxed{\ \ ソ\ \ }である。また、f(x)は相加平均\\
と相乗平均の関係から、x=\boxed{\ \ タ\ \ }で最小値\ \boxed{\ \ チ\ \ }\ をとる。\\
g(x)=-2\ となるxの値は\log_2\left(\sqrt{\boxed{\ \ ツ\ \ }}-\boxed{\ \ テ\ \ }\right)である。\\
\\
(3)次の①~④は、xにどのような値を代入しても常に成り立つ。\\
f(-x)=\boxed{\boxed{\ \ ト\ \ }} \cdots①\\
g(-x)=\boxed{\boxed{\ \ ナ\ \ }} \cdots②\\
\left\{f(x)\right\}^2-\left\{g(x)\right\}^2=\boxed{\ \ ニ\ \ } \cdots③\\
g(2x)=\boxed{\ \ ヌ\ \ }\ f(x)g(x) \cdots④\\
\\
\boxed{\boxed{\ \ ト\ \ }}、\boxed{\boxed{\ \ ナ\ \ }}の解答群(同じものを繰り返し選んでもよい。)\\
⓪f(x) ①-f(x) ②g(x) ③-g(x) \\
\\
\\
(3)花子さんと太郎さんは、f(x)とg(x)の性質について話している。\\
\\
花子:①~④は三角関数の性質に似ているね。\\
太郎:三角関数の加法定理に類似した式(\textrm{A})~(\textrm{D})を考えてみたけど、\\
常に成り立つ式はあるだろうか。\\
花子:成り立たない式を見つけるために、式(\textrm{A})~(\textrm{D})の\betaに何か具体\\
的な値を代入して調べてみたらどうかな。\\
\\
太郎さんが考えた式\\
f(\alpha-\beta)=f(\alpha)g(\beta)+g(\alpha)f(\beta) \cdots(\textrm{A})\\
f(\alpha+\beta)=f(\alpha)f(\beta)+g(\alpha)g(\beta) \cdots(\textrm{B})\\
g(\alpha-\beta)=f(\alpha)f(\beta)+g(\alpha)g(\beta) \cdots(\textrm{C})\\
g(\alpha+\beta)=f(\alpha)g(\beta)-g(\alpha)f(\beta) \cdots(\textrm{D})\\
\\
\\
(1),(2)で示されたことのいくつかを利用すると、式(\textrm{A})~(\textrm{D})のうち、\\
\boxed{\boxed{\ \ ネ\ \ }}以外の三つは成り立たないことが分かる。\boxed{\boxed{\ \ ネ\ \ }}は左辺と右辺\\
をそれぞれ計算することによって成り立つことが確かめられる。\\
\\
\boxed{\boxed{\ \ ネ\ \ }}の解答群\\
⓪(\textrm{A}) ①(\textrm{B}) ②(\textrm{C}) ③(\textrm{D}) 
\end{eqnarray}
この動画を見る 
PAGE TOP