【数学】中2-56 三角形の合同① 基本編 - 質問解決D.B.(データベース)

【数学】中2-56 三角形の合同① 基本編

問題文全文(内容文):
【ポイント】
三角形の合同条件は3種類!!
①____がそれぞれ等しいとき
②____________がそれぞれ等しいとき
③____________がそれぞれ等しいとき

④右の三角形から合同なものを選び、記号を使って表そう!
(合同条件はポイントの番号から選ぶ)
※図は動画内参照
単元: #数学(中学生)#中2数学#三角形と四角形
指導講師: とある男が授業をしてみた
問題文全文(内容文):
【ポイント】
三角形の合同条件は3種類!!
①____がそれぞれ等しいとき
②____________がそれぞれ等しいとき
③____________がそれぞれ等しいとき

④右の三角形から合同なものを選び、記号を使って表そう!
(合同条件はポイントの番号から選ぶ)
※図は動画内参照
投稿日:2013.11.02

<関連動画>

【数学】中2-48 三角形の内角と外角① 基本編

アイキャッチ画像
単元: #数学(中学生)#中2数学#三角形と四角形
指導講師: とある男が授業をしてみた
問題文全文(内容文):
・を①____、・を②____、といい、
$\angle a+\angle b+\angle c=$③____
$\angle a+\angle b=$④____
$\angle b+\angle c=$⑤____
$\angle c+\angle a=$⑥____である。

$\angle x,\angle y $の大きさを求めよう!

※図は動画内参照
この動画を見る 

【受験対策】数学-証明4

アイキャッチ画像
単元: #数学(中学生)#中2数学#中3数学#平行と合同#円#三角形と四角形
指導講師: とある男が授業をしてみた
問題文全文(内容文):
右図のように,円$O$に正三角形$ABC$が内接している.
点$C$をふくまない側にある孤$AB$上に点$D$をとり,
$△ADB$をつくる.
線分$CD$をひき,線分$AB$との交点を$E$とし,
線分$CD$上に$AD=CF$となる点$F$をとる.
線分$BF$を延長した直線と線分$AC$,円$O$との交点を
それぞれ$G,H$とする.
このとき,次の各問いに答えなさい.
ただし,点$H$は点$B$と異なる点とする .

①$△ADB\equiv △CFB$を証明しなさい.

②$\triangle BFE \sim \triangle CHG$を証明しなさい.

図は動画内参照
この動画を見る 

気付けば一瞬!!式の値

アイキャッチ画像
単元: #数学(中学生)#中2数学#式の計算(単項式・多項式・式の四則計算)
指導講師: 数学を数楽に
問題文全文(内容文):
$\frac{a}{b} + \frac{b}{a} = 2$のとき
$a-b=?$
この動画を見る 

【高校受験対策】数学-死守13

アイキャッチ画像
単元: #数学(中学生)#中2数学#中3数学#式の計算(単項式・多項式・式の四則計算)#連立方程式#2次方程式#確率#円#立体図形#立体図形その他#三角形と四角形
指導講師: とある男が授業をしてみた
問題文全文(内容文):
次の各問いに答えなさい.

①$3-(-2)$を計算しなさい.

②$(-3)^2+5\times (-1)$を計算しなさい.

③$(2x^2-5x)-(3x^2-2x)$を計算しなさい.

④$(-4a^2)\times 18b \div 9ab$を計算しなさい.

⑤$(\sqrt3 + 1)^2$を計算しなさい.

⑥$x$に$-3$をかけて$5$をひいた数は$7$より小さい.
この数量の関係を不等式で表しなさい.

⑦次の連立方程式を解きなさい.
$3x+4y=x+y=2$

⑧2次方程式$(x-2)^2=81$を解きなさい.

⑨右の図で,$y$が$x$に比例するとき,
(ア)にあてはまる数を求めなさい.

⑩$1,2,3,4$の数字が書かれた4枚のカードが袋の中に入っている.
このカードを2枚同時に取り出すとき,
袋の中に残っているカードに書かれている数の和が,
取り出したカードに書かれている数の和より大きくなる確率を求めなさい.

⑪右上の図1は,底面の半径が$6cm$,母線の長さが$30cm$の円すいである.
この円すいの展開図をかいたとき,側面になるおうぎ形の中心角を求めなさい.

⑫右の図2の平行四辺形$ABCD$で,
$AB,BC$上にそれぞれ点$E,F$をとる.
$AC /\!/ EF$のとき,$△ACE$と面積が等しい三角形を3つ書きなさい.

図は動画内を参照
この動画を見る 

連立方程式

アイキャッチ画像
単元: #連立方程式#数Ⅱ#複素数と方程式#剰余の定理・因数定理・組み立て除法と高次方程式#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
これを解け.

$\begin{eqnarray}
\left\{
\begin{array}{l}
\dfrac{ab}{a+b}=1 \\
\dfrac{bc}{b+c}=2 \\
\dfrac{ca}{c+a}=3 \\
\end{array}
\right.
\end{eqnarray}$
この動画を見る 
PAGE TOP