ε-δ論法 #1 f(x)=√xが連続 - 質問解決D.B.(データベース)

ε-δ論法 #1 f(x)=√xが連続

問題文全文(内容文):
Question
$f(x)=\sqrt x\ (x\geqq 0)$が連続であることを$\xi -\vartheta$論法で示せ.
単元: #数Ⅱ#式と証明#数学(高校生)
指導講師: ますただ
問題文全文(内容文):
Question
$f(x)=\sqrt x\ (x\geqq 0)$が連続であることを$\xi -\vartheta$論法で示せ.
投稿日:2021.01.30

<関連動画>

高校範囲だけど中3生も解けるし

アイキャッチ画像
単元: #数Ⅱ#式と証明#恒等式・等式・不等式の証明#数学(高校生)
指導講師: 数学を数楽に
問題文全文(内容文):
$\frac{x^2-2}{x-1} + \frac{1}{x-1}$
この動画を見る 

ε-N論法 #2 lim 1/n^2=0

アイキャッチ画像
単元: #数Ⅱ#式と証明#微分法と積分法#恒等式・等式・不等式の証明#平均変化率・極限・導関数#数学(高校生)
指導講師: ますただ
問題文全文(内容文):
$\displaystyle \lim_{n\to\infty} \dfrac{1}{n^2}=0$を
$ε-N$論法を利用して示せ.
この動画を見る 

整式の剰余 すっきり解こう

アイキャッチ画像
単元: #数Ⅱ#式と証明#整式の除法・分数式・二項定理
指導講師: 鈴木貫太郎
問題文全文(内容文):
$x^{2021}$を$x^4+x^2+1$で割った余りを求めよ.
この動画を見る 

福田のわかった数学〜高校3年生理系041〜極限(41)有名な極限の証明(1)

アイキャッチ画像
単元: #数Ⅱ#式と証明#恒等式・等式・不等式の証明#関数と極限#関数の極限#数学(高校生)#数Ⅲ
指導講師: 福田次郎
問題文全文(内容文):
数学$\textrm{III}$ 有名な極限を証明(1)
(1)$x \gt 0$で$e^x \gt 1+x+\dfrac{x^2}{2}$ を示せ。
(2)$\displaystyle \lim_{x \to \infty}xe^{-x}$ を求めよ。
この動画を見る 

【数Ⅱ】式と証明:二項定理 覚え方編

アイキャッチ画像
単元: #数Ⅱ#式と証明#整式の除法・分数式・二項定理#数学(高校生)
指導講師: 理数個別チャンネル
問題文全文(内容文):
$(a+b)^n$を一般項をr番目として、二項定理を用いて展開しなさい。表記する際には、第1,2,3項と第r項,そして第n-2,n-1,n項を表すこと。なお、a,b,n,rの文字は用いて表してよい。
この動画を見る 
PAGE TOP