近畿大(理工)整式の剰余 - 質問解決D.B.(データベース)

近畿大(理工)整式の剰余

問題文全文(内容文):
$ x^{10}-x+1$を$(x-1)^3$で割った余りを求めよ.

近畿大(理工)過去問
単元: #大学入試過去問(数学)#学校別大学入試過去問解説(数学)#近畿大学#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
$ x^{10}-x+1$を$(x-1)^3$で割った余りを求めよ.

近畿大(理工)過去問
投稿日:2022.06.29

<関連動画>

大学入試問題#295 防衛大学校(2009) #定積分

アイキャッチ画像
単元: #大学入試過去問(数学)#学校別大学入試過去問解説(数学)#防衛大学校#数学(高校生)
指導講師: ますただ
問題文全文(内容文):
$\displaystyle \int_{log2}^{log4}\displaystyle \frac{2e^x-2e^{-x}}{e^{2x}+e^{-2x}+1}dx$

出典:2009年防衛大学校
この動画を見る 

福田の数学〜慶應義塾大学2022年薬学部第1問(2)〜高次方程式の解

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#複素数と方程式#剰余の定理・因数定理・組み立て除法と高次方程式#学校別大学入試過去問解説(数学)#慶應義塾大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
(2)a,bは実数とする。xの3次方程式$x^3+(a+4)x^2-3(a+4)x+b=0$
の実数解が$x=3$のみであるとき、aの値の範囲は$\boxed{\ \ エ\ \ }$である。

2022慶應義塾大学薬学部過去問
この動画を見る 

大学入試問題#852「これは、大変・・・グラフでもいけるんかなー」 #小樽商科大学(2018) #整数問題

アイキャッチ画像
単元: #大学入試過去問(数学)#学校別大学入試過去問解説(数学)#数学(高校生)#小樽商科大学
指導講師: ますただ
問題文全文(内容文):
$\displaystyle \frac{2n-2}{n^2+2n+2}$が整数となるような整数$n$をすべて求めよ

出典:2018年小樽商科大学
この動画を見る 

大学入試問題#846「基本問題」 #岩手大学(2017) #極限

アイキャッチ画像
単元: #大学入試過去問(数学)#関数と極限#関数の極限#学校別大学入試過去問解説(数学)#数学(高校生)#岩手大学#数Ⅲ
指導講師: ますただ
問題文全文(内容文):
$\displaystyle \lim_{ x \to 0 } (1+x)^{\frac{1}{x}}=e$を利用して
$\displaystyle \lim_{ x \to 0 }\displaystyle \frac{\tan x-\sin x}{x^4}\{log(x^2+x^3)-log\ x^2\}$を求めよ

出典:2017年岩手大学 入試問題
この動画を見る 

2023藤田医科大 1の7乗根の基本問題

アイキャッチ画像
単元: #大学入試過去問(数学)#複素数平面#複素数平面#学校別大学入試過去問解説(数学)#数学(高校生)#藤田医科大学#数C
指導講師: 鈴木貫太郎
問題文全文(内容文):
$Z=\cos\dfrac{2}{7}\pi+i\sin\dfrac{2}{7}\piのとき
Z^7=\Box
Z^6+Z^5+Z^4+Z^3+Z^2+Z=\Box
(1-Z)(1-Z^2)(1-Z^3)×(1-Z^4)(1-Z^5)(1-Z^6)=\Box
\Boxを答えよ.$
この動画を見る 
PAGE TOP