【数Ⅱ】【微分法と積分法】方程式の解の個数8 ※問題文は概要欄 - 質問解決D.B.(データベース)

【数Ⅱ】【微分法と積分法】方程式の解の個数8 ※問題文は概要欄

問題文全文(内容文):
曲線C:y=x³+3x²について、次の問いに答えよ。
(1)C上の点P(t,t³+3t)におけるCの接線が点A(0,a)を通る時、等式2t³+3t²+a=0が成り立つことを示せ。
(2)Aを通るCの接線が3本存在するとき、aの値の範囲を求めよ。
チャプター:

0:00 オープニング
0:04 問題概要
1:00 (1)解説
2:30 (2)解説

単元: #数Ⅱ#微分法と積分法#接線と増減表・最大値・最小値#数学(高校生)
教材: #4S数学#4S数学Ⅱ+BのB問題解説(新課程2022年以降)#微分法と積分法#中高教材
指導講師: 理数個別チャンネル
問題文全文(内容文):
曲線C:y=x³+3x²について、次の問いに答えよ。
(1)C上の点P(t,t³+3t)におけるCの接線が点A(0,a)を通る時、等式2t³+3t²+a=0が成り立つことを示せ。
(2)Aを通るCの接線が3本存在するとき、aの値の範囲を求めよ。
投稿日:2025.02.25

<関連動画>

東大 積分 Mathematics Japanese university entrance exam Tokyo University

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#微分法と積分法#学校別大学入試過去問解説(数学)#不定積分・定積分#東京大学#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
$0 \leqq a \leqq \beta$ 実数

$f(x)=x^2-(a+ \beta)z+a \beta$

$\displaystyle \int_{-1}^{ 1 }f(x)dx=1$が成立している。

定積分$s=\displaystyle \int_{0}^{ a }f(x)ax$を$a$の式で表し、$S$の最大値を求めよ。


出典:2008年東京大学 過去問
この動画を見る 

数学「大学入試良問集」【2−4 剰余の定理•商と余り】を宇宙一わかりやすく

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#複素数と方程式#剰余の定理・因数定理・組み立て除法と高次方程式#学校別大学入試過去問解説(数学)#数学(高校生)#鹿児島大学
指導講師: ハクシ高校【数学科】良問演習チャンネル
問題文全文(内容文):
次の問いに答えよ。
(1)
$x$の整式$p(x)$を$x-3$で割った余りは$2,(x-2)^2$で割った余りは$x+1$である。
$p(x)$を$(x-2)^2$で割った商は$q(x)$とするとき、$q(x)$を$x-3$で割った余りを求めよ。

(2)
$p(x)$は(1)と同じ条件を満たすものとする。
このとき、$xp(x)$を$(x-3)(x-2)^2$で割った余りを求めよ。
この動画を見る 

大学入試問題#600「合同式使ってみた」 山梨大学医学部(2014) #整式

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#式と証明#複素数と方程式#整式の除法・分数式・二項定理#剰余の定理・因数定理・組み立て除法と高次方程式#学校別大学入試過去問解説(数学)#山梨大学#数学(高校生)
指導講師: ますただ
問題文全文(内容文):
$x^{2014}$を$x^4+x^3+x^2+x+1$で割った余りを求めよ

出典:2014年山梨大学 入試問題
この動画を見る 

3乗の方程式

アイキャッチ画像
単元: #数Ⅱ#複素数と方程式#剰余の定理・因数定理・組み立て除法と高次方程式#数学(高校生)
指導講師: 数学を数楽に
問題文全文(内容文):
$x^3-333^3 = 444^3 + 555^3$
(xは実数)
x=?

この動画を見る 

17兵庫県教員採用試験(数学:3番 微積)

アイキャッチ画像
単元: #数Ⅱ#微分法と積分法#平均変化率・極限・導関数#接線と増減表・最大値・最小値#その他#不定積分・定積分#面積、体積#数学(高校生)#教員採用試験
指導講師: ますただ
問題文全文(内容文):
3⃣
$l_1:y=kx+2k$ $(k \in \mathbb{ R })$
$l_2:y=x^3-3x+2$
(1)$l_2$の極値
(2)k=0,$l_1$と$l_2$で囲まれた面積
(3)$l_1$と$l_2$が3点で交わるkの範囲
(4)$l_1$が$l_2$の変曲点を通るとき$l_1$と$l_2$で囲まれた面積
この動画を見る 
PAGE TOP