#3 数検準1級2次過去問 三角関数 - 質問解決D.B.(データベース)

#3 数検準1級2次過去問 三角関数

問題文全文(内容文):
$\boxed{1}$
$\tan \alpha=k,-\dfrac{\pi}{2}\lt \alpha \lt \dfrac{\pi}{2}$をみたす
$\alpha$を$T(k)$で表す

(1)$xy\neq 1$のとき,
$ \\\ \tan (T(x)+T(y))$

(2)$4T\left(\dfrac{1}{5}\right)-T\left(\dfrac{1}{239}\right)=\dfrac{\pi}{4}$を示せ.
*$-\dfrac{\pi}{2} \lt \beta\lt \dfrac{\pi}{2}$は利用してよい.
単元: #数Ⅱ#数学検定・数学甲子園・数学オリンピック等#三角関数#数学検定#数学検定準1級#数学(高校生)
指導講師: ますただ
問題文全文(内容文):
$\boxed{1}$
$\tan \alpha=k,-\dfrac{\pi}{2}\lt \alpha \lt \dfrac{\pi}{2}$をみたす
$\alpha$を$T(k)$で表す

(1)$xy\neq 1$のとき,
$ \\\ \tan (T(x)+T(y))$

(2)$4T\left(\dfrac{1}{5}\right)-T\left(\dfrac{1}{239}\right)=\dfrac{\pi}{4}$を示せ.
*$-\dfrac{\pi}{2} \lt \beta\lt \dfrac{\pi}{2}$は利用してよい.
投稿日:2021.01.24

<関連動画>

数検準1級2次(1番 三角関数)

アイキャッチ画像
単元: #数Ⅱ#数学検定・数学甲子園・数学オリンピック等#三角関数#数学検定#数学検定準1級#数学(高校生)
指導講師: ますただ
問題文全文(内容文):
$\boxed{1}$ $0\lt \alpha,\beta,\varUpsilon \lt \dfrac{\pi}{2}$
$\tan \alpha=\dfrac{1}{2},\tan\beta=\dfrac{1}{5},\tan\varUpsilon=\dfrac{1}{8}$のとき,
$\sin(\alpha+\beta+\varUpsilon)$と,$\cos(\alpha+\beta+\varUpsilon)$
の大小を比較せよ.
この動画を見る 

練習問題8(数検準1級 教員採用試験 極限値からの区分求積法)

アイキャッチ画像
単元: #数Ⅱ#数学検定・数学甲子園・数学オリンピック等#微分法と積分法#平均変化率・極限・導関数#その他#数学検定#数学検定準1級#数学(高校生)#教員採用試験
指導講師: ますただ
問題文全文(内容文):
$\displaystyle \lim_{n\to\infty} \dfrac{\sqrt[n]{1\times 3\times 5\times ・・・ \times(2n-1)}}{n}$
これを解け.
この動画を見る 

20年5月数検準1級1次試験(極限)

アイキャッチ画像
単元: #数Ⅱ#数学検定・数学甲子園・数学オリンピック等#微分法と積分法#平均変化率・極限・導関数#数学検定#数学検定準1級#数学(高校生)
指導講師: ますただ
問題文全文(内容文):
$\boxed{7}$
$\displaystyle \lim_{n\to\infty}(\sqrt{4n^2+7n}-2\sqrt{n^2+2n})$
これを解け.

20年5月数検準1級1次試験(極限)過去問
この動画を見る 

#19数検準1級 極限値(はさみうちの原理)

アイキャッチ画像
単元: #数Ⅱ#数学検定・数学甲子園・数学オリンピック等#微分法と積分法#平均変化率・極限・導関数#数学検定#数学検定準1級#数学(高校生)
指導講師: ますただ
問題文全文(内容文):
$\displaystyle \lim_{n\to\infty} \displaystyle \int_{0}^{1} \dfrac{x^n}{1+x^2} dx$
を求めよ.
この動画を見る 

20年5月数検準1級1次試験(極限)

アイキャッチ画像
単元: #数学検定・数学甲子園・数学オリンピック等#関数と極限#数列の極限#数学検定#数学検定準1級#数学(高校生)#数Ⅲ
指導講師: ますただ
問題文全文(内容文):
7⃣$\displaystyle \lim_{ n \to \infty } (\sqrt{4n^2+7n} - 2\sqrt{n^2+2n})$
この動画を見る 
PAGE TOP