数学オリンピック 予選の簡単な問題 - 質問解決D.B.(データベース)

数学オリンピック 予選の簡単な問題

問題文全文(内容文):
数学オリンピック予選
$1^{2001}+2^{2001}+3^{2001}+\cdots+2000^{2001}+$
$2001^{2001}$を13で割った余りを求めよ.
単元: #数A#数学検定・数学甲子園・数学オリンピック等#場合の数と確率#整数の性質#場合の数#約数・倍数・整数の割り算と余り・合同式#数学オリンピック#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
数学オリンピック予選
$1^{2001}+2^{2001}+3^{2001}+\cdots+2000^{2001}+$
$2001^{2001}$を13で割った余りを求めよ.
投稿日:2018.11.04

<関連動画>

【高校数学】反復試行の確率例題~一緒に解いてもやもや解決~ 2-6.5【数学A】

アイキャッチ画像
単元: #数A#場合の数と確率#数学(高校生)
指導講師: 【楽しい授業動画】あきとんとん
問題文全文(内容文):
1⃣
白玉3個、赤玉2個が入った袋から玉を1個取り出し、色を調べてから
元に戻すことを5回行うとき、次の確率を求めよ。
(a) 白玉をちょうど3回取り出す確率
(b) 5回目に3度目の赤玉を取り出す確率
(c) 5回目に初めて白玉が出る確率

-----------------

2⃣
数直線上を動く点Pが原点にある。1個のさいころを投げて、偶数の目が
出たら正の方向に1、奇数の目が出たら負の方向に1だけPを動かす。
さいころを8回投げたときのPの座標が2である確率を求めよ。

-----------------

3⃣
AとBがテニスの試合を行うとき、各ゲームでA Bが勝つ確率はそれぞれ
$\displaystyle \frac{2}{3} , \displaystyle \frac{1}{3}$あるとする。
3ゲーム先に勝った方が試合の勝者になるとき、Aが勝者になる確率を求めよ。
この動画を見る 

福田の数学〜神戸大学2023年文系第2問〜確率の基本性質

アイキャッチ画像
単元: #数A#大学入試過去問(数学)#場合の数と確率#確率#学校別大学入試過去問解説(数学)#神戸大学#数学(高校生)#数B
指導講師: 福田次郎
問題文全文(内容文):
$\Large\boxed{2}$ A, Bの2人が、はじめに、Aは2枚の硬貨を、Bは1枚の硬貨を持っている。
2人は次の操作(P)を繰り返すゲームを行う。
(P)2人は持っている硬貨すべてを同時に投げる。それぞれが投げた硬貨のうち表がでた硬貨の枚数を数え、その枚数が少ない方が相手に1枚の硬貨を渡す。
操作(P)を繰り返し、2人のどちらかが持っている硬貨の枚数が3枚となった時点でこのゲームは終了する。操作(P)をn回繰り返し行ったとき、Aが持っている硬貨の枚数が3枚となってゲームが終了する確率を$p_n$とする。ただし、どの硬貨も1回投げたとき、表の出る確率は$\frac{1}{2}$とする。以下の問いに答えよ。
(1)$p_1$の値を求めよ。
(2)$p_2$の値を求めよ。
(3)$p_3$の値を求めよ。

2023神戸大学文系過去問
この動画を見る 

京大入試問題 数学 頑張れば小中学生にも解けるぞ Japanese university entrance exam questions Kyoto University

アイキャッチ画像
単元: #数A#大学入試過去問(数学)#場合の数と確率#確率#学校別大学入試過去問解説(数学)#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
京都大学過去問題
$n \geqq 3$とする。1,2,・・・,nのうちから重複を許して6個の数字をえらびそれを並べた順列を考える。
このような順列のうちで、どの数字もそれ以外の5つの数字のどれかに等しくなっているようなものの個数を求めよ。
この動画を見る 

東大 確率ジャンケン

アイキャッチ画像
単元: #数A#場合の数と確率#確率#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
$3$人でじゃんけんをして$k$回目に$1$人の勝者が決まる確率を求めよ.
※負けた人は次以降参加しない.

1971東大過去問
この動画を見る 

【数A】確率:感覚でわかる反復試行

アイキャッチ画像
単元: #数A#場合の数と確率#確率#数学(高校生)
指導講師: 理数個別チャンネル
問題文全文(内容文):
コインを10回投げる問題に関して解説していきます.
この動画を見る 
PAGE TOP