【保存版】たすきがけの因数分解の裏技 - 質問解決D.B.(データベース)

【保存版】たすきがけの因数分解の裏技

問題文全文(内容文):
【保存版】たすきがけの因数分解の裏技
$3x^2-10x+8$
単元: #数学(中学生)#中3数学#式の計算(展開、因数分解)
指導講師: 【楽しい授業動画】あきとんとん
問題文全文(内容文):
【保存版】たすきがけの因数分解の裏技
$3x^2-10x+8$
投稿日:2023.05.17

<関連動画>

気づけばほぼ一瞬!!式の値 日本女子大学付属高校

アイキャッチ画像
単元: #数学(中学生)#中3数学#式の計算(展開、因数分解)#高校入試過去問(数学)
指導講師: 数学を数楽に
問題文全文(内容文):
$x(x-2)+y(y-2)+2(xy-1)=-3$のとき
x+y=?

日本女子大学附属高等学校
この動画を見る 

高等学校入学試験問題予想:法政大学第二高等学校~全部入試問題

アイキャッチ画像
単元: #数学(中学生)#中2数学#中3数学#式の計算(展開、因数分解)#2次方程式#確率#高校入試過去問(数学)
指導講師: 高校入試から見た数学の世界「全部入試問題」by しろたん
問題文全文(内容文):
$\boxed{1}$
因数分解せよ.

(1)$(x-2y)^2+(x+y)(x-5y)+y^2$
(2)$a=\dfrac{1}{\sqrt5+1},b=\dfrac{1}{\sqrt5-1}$のとき,$(a-4b)(b-4a)=?$

$\boxed{2}$
1~5までの数字が書かれたカードが2枚ずつ合計10枚ある.

(1)これらのカードを袋に入れてその中から同時に2枚取り出すとき,カードの数字の積が偶数となる確率は?
(2)$n$の3以上の自然数$\dfrac{4}{\sqrt n-\sqrt2}$の整数部分が2であるとき,
$n$として考えられる値を全て求めよ.

$\boxed{3}$
$PQ$と$D$の交点を$R$とする.
点$P,Q$の$x$座標を$p,q$とする.
直線$PQ$の傾きが,$C,D$の比例定数$a$と等しく,$R$が線分$PQ$の中点となる.
(1)点$A$の座標を$a$で表せ.
(2)$p+q=?$
(3)点$R$の座標を$a$で表せ.
(4)$p.q$の値

法政第二高校過去問
この動画を見る 

【高校受験対策/数学】死守55

アイキャッチ画像
単元: #数学(中学生)#中1数学#中2数学#中3数学#正の数・負の数#式の計算(単項式・多項式・式の四則計算)#連立方程式#式の計算(展開、因数分解)#平方根#2次方程式#空間図形#2次関数#文字と式#平面図形
指導講師: とある男が授業をしてみた
問題文全文(内容文):
高校受験対策・死守55

①$(-3)^2+2 \times (-5)$を計算しなさい。

②$\frac{4x-3}{2}\times\frac{6x-7}{5}$を計算しなさい。

③$(-4xy)^2×(-3x)$を計算しなさい。

④連立方程式を解きなさい。
$4x-3y=-7$
$5x+9y=-13$

⑤$5\sqrt{6}+2\sqrt{24}-\frac{6\sqrt{3}}{\sqrt{2}}$を計算しなさい。

⑥二次方程式$(x+4)(x-6)=6x-39$を解きなさい。

②関数$y=ax^2$について、$x$の値が$-5$から$-3$まで増加したときの変化の割合が$2$であるとき、$a$の値を求めなさい。

⑧底面の半径が$5$ cm、高さが$6$ cmの円すいの体積を求めなさい。 ただし円周率は$\pi$とする。

⑨右の図1のように、三角形$ABC$の$\angle B$の二等分線と$\angle C$の外角$\angle ACD$の二等分線の交点を$E$とする。
$\angle BAC$の大きさが$40°$のとき、$\angle BEC$の大きさを求めなさい。

⑩右の図2で、$\angle APB=120°$のひし形$AQBP$を1つ、 定規とコンパスを用いて作図しなさい。 なお作図に用いた線は消さずに残して おきなさい。
この動画を見る 

【高校受験対策/数学】死守-87

アイキャッチ画像
単元: #数学(中学生)#中1数学#正の数・負の数#方程式#式の計算(展開、因数分解)#平方根#2次関数#文字と式#平面図形
指導講師: とある男が授業をしてみた
問題文全文(内容文):
【高校受験対策/数学】死守-87

①$3+(-5)$を計算しなさい。

➁$5\sqrt{6}-\sqrt{24}+\frac{18}{\sqrt{6}}$を計算しなさい。

③$3(x+y)-2(-x+2y)$を計算しなさい。

④$-4ab^2÷(-8a^2b)×3a^2$を計算しなさい。

⑤$(3x-y)^2$を展開しなさい。

⑥$a=3$のとき、$a^2+4a$の値を求めなさい。

⑦一次方程式$\frac{5-3x}{2}-\frac{x-1}{6}=1$を解きなさい。

⑧関数$y=ax^2$のグラフが点$(6,12)$を通っている。
この関数について$x$の変域が$-4 \leqq x\leqq2$のとき、$y$の変域を求めなさい。

⑨右の図の円$O$で、点$A$が接点と なるように円$O$の接線を作図しなさい。
ただし作図に用いた線は消さずに残しておくこと。
この動画を見る 

【高校受験対策/数学】死守-93

アイキャッチ画像
単元: #数学(中学生)#中1数学#正の数・負の数#方程式#式の計算(展開、因数分解)#平方根#2次方程式#確率#文字と式#標本調査
指導講師: とある男が授業をしてみた
問題文全文(内容文):
高校受験対策・死守93

①$2-(-5)-4$を計算せよ。

➁$3÷\frac{1}{4}×(-2^2)$を計算せよ。

③等式$3(4x-y)=6$を$y$について解け。

④$\sqrt{12}-\frac{9}{\sqrt{3}}$を計算せよ。

⑤$xy-6x+y-6$を 因数分解せよ。

⑥二次方程式$x^2+5x+2=0$を解け。

⑦右の表は、ある学級の生徒10人について、通学距離を調べて度数分布表に整理したものである。
この表からこの10人の通学距離の平均値を求めると何$km$になるか。

⑧次のア~ウの数の絶対値が、小さい順に左から右に並ぶように記号ア~ウを用いて書け。
ア $-3$
イ $0$
ウ $2$

⑨数字を書いた5枚のカード1、1、2、3、4がある。
この5枚のカードをよくきって、その中からもとにもどさずに続けて2枚を取り出し、
はじめに取り出したカードに書いてある数を$a$、次に取り出したカードに書いてある数を$b$とする。
このとき、$a \geqq b$になる確率を求めよ。
この動画を見る 
PAGE TOP