07愛知県教員採用試験(数学:7番 複素数) - 質問解決D.B.(データベース)

07愛知県教員採用試験(数学:7番 複素数)

問題文全文(内容文):
$\boxed{7}$ $\vert Z \vert=1,Z^5=1$
$Z\leftarrow \in $を求めよ.
単元: #数Ⅱ#複素数と方程式#複素数#その他#数学(高校生)#教員採用試験
指導講師: ますただ
問題文全文(内容文):
$\boxed{7}$ $\vert Z \vert=1,Z^5=1$
$Z\leftarrow \in $を求めよ.
投稿日:2021.01.12

<関連動画>

九州大 COS7.5° 複素数

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#複素数と方程式#複素数#学校別大学入試過去問解説(数学)#数学(高校生)#九州大学
指導講師: 鈴木貫太郎
問題文全文(内容文):
$z_1=\displaystyle \frac{1+i}{\sqrt{ 2 }},z_2=\displaystyle \frac{\sqrt{ 3 }+i}{2}$

(1)
$|z_1+z_2|$の値を求めよ

(2)
$\cos 7.5^{ \circ }$を求めよ

出典:1972年九州大学 過去問
この動画を見る 

日本大(医学部)複素数

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#複素数と方程式#複素数#学校別大学入試過去問解説(数学)#日本大学#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
$\alpha=1+\sqrt3 i$
$\dfrac{(2+\alpha)^6}{\alpha^3}$の値を求めよ.

日本(医)過去問
この動画を見る 

福田の数学〜北里大学2020年医学部第1問(1)〜虚数係数の3次方程式の解

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#複素数と方程式#複素数#剰余の定理・因数定理・組み立て除法と高次方程式#学校別大学入試過去問解説(数学)#北里大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
$\Large{\boxed{1}}$ (1)$p,q$を実数の定数、$i$を虚数単位とする。$x$の方程式
$x^3-(p-i)x^2+(q-pi)x-2p+\displaystyle\frac{3p}{2}i=0$
が$2+i$を解にもつとする。このとき、$p=\boxed{\ \ ア\ \ }$,$q=\boxed{\ \ イ\ \ }$である。また、この方程式の$2+i$以外の解を$\alpha$,$\beta$(ただし、|$\alpha$| $\lt$ |$\beta$|)とおくと$\left(\displaystyle\frac{\beta-i}{\alpha}\right)^7=\boxed{\ \ ウ \ \ }$である。

2020北里大学医学部過去問
この動画を見る 

2021慶應義塾大(理工) 式の値

アイキャッチ画像
単元: #数Ⅱ#複素数と方程式#複素数#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
$\alpha^2+3\alpha+3=0$のとき,$(\alpha+1)^2(\alpha+2)^5=\Box$
$(\alpha+2)^s(\alpha+3)^t=3$となる整数$s,t$の組をすべて求めよ.

2021慶應(理)
この動画を見る 

千葉大 複素数 極形式 7乗根

アイキャッチ画像
単元: #大学入試過去問(数学)#複素数と方程式#複素数#学校別大学入試過去問解説(数学)#千葉大学
指導講師: 鈴木貫太郎
問題文全文(内容文):
$\alpha=\cos \displaystyle \frac{2}{7}\pi+i \sin \displaystyle \frac{2}{7}\pi$

(1)
$\alpha+\alpha^2+\alpha^3+\alpha^4+\alpha^5+\alpha^6$

(2)
$(1-\alpha)(1-\alpha^2)(1-\alpha^3)(1-\alpha^4)$
$(1-\alpha^5)(1-\alpha^6)$

(1)(2)それぞれ値を求めよ

出典:千葉大学 過去問
この動画を見る 
PAGE TOP