大学入試問題#398「あえての正面突破!!」 京都教育大学2009 #定積分 - 質問解決D.B.(データベース)

大学入試問題#398「あえての正面突破!!」 京都教育大学2009 #定積分

問題文全文(内容文):
$\displaystyle \int_{0}^{\frac{\pi}{4}} log(1+\tan\ x) dx$

出典:2009年京都教育大学 入試問題
チャプター:

00:00 問題紹介
00:21 本編スタート
06:22 作成した解答①
06:34 作成した解答②
06:45 エンディング(楽曲提供:兄いえてぃさん)

単元: #積分とその応用#定積分#数学(高校生)#数Ⅲ
指導講師: ますただ
問題文全文(内容文):
$\displaystyle \int_{0}^{\frac{\pi}{4}} log(1+\tan\ x) dx$

出典:2009年京都教育大学 入試問題
投稿日:2022.12.16

<関連動画>

大学入試問題#348「もはや、あれで置換」 横浜国立大学 #定積分

アイキャッチ画像
単元: #大学入試過去問(数学)#定積分#学校別大学入試過去問解説(数学)#横浜国立大学#数学(高校生)#数Ⅲ
指導講師: ますただ
問題文全文(内容文):
$\displaystyle \int_{0}^{\frac{1}{2}} x^2\sqrt{ 1-x^2 }\ dx$

出典:横浜国立大学 入試問題
この動画を見る 

【高校数学】毎日積分62日目~47都道府県制覇への道~【⑥長崎】【毎日17時投稿】

アイキャッチ画像
単元: #大学入試過去問(数学)#積分とその応用#定積分#学校別大学入試過去問解説(数学)#数学(高校生)#長崎大学#数Ⅲ
指導講師: 理数個別チャンネル
問題文全文(内容文):
$ a,b$を定数とする。すべての実数$x$で連続な関数$f(x)$について、等式
$\displaystyle\int_a^bf(x)dx = \displaystyle\int_a^bf(a+b-x)dx$
が成り立つことを証明せよ。また、定積分$\displaystyle\int_1^2\frac{x^2}{x^2+(3-x)^2}dx$を求めよ。
【長崎大学 2023】
この動画を見る 

#会津大学(2015) #定積分 #Shorts

アイキャッチ画像
単元: #数Ⅱ#微分法と積分法#積分とその応用#定積分#不定積分・定積分#数学(高校生)#数Ⅲ
指導講師: ますただ
問題文全文(内容文):
$\displaystyle \int_{0}^{\frac{\pi}{2}} \cos^3x\ dx$

出典:2015年会津大学
この動画を見る 

大学入試問題#562「証明問題じゃなきゃ解けるのか?」 東京帝国大学1937 #定積分

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#三角関数#三角関数とグラフ#加法定理とその応用#数列#数学的帰納法#積分とその応用#定積分#学校別大学入試過去問解説(数学)#東京大学#数学(高校生)#数B#数Ⅲ
指導講師: ますただ
問題文全文(内容文):
$n$:正の整数

$\displaystyle \int_{0}^{\pi} \displaystyle \frac{\sin(2n-1)x}{\sin\ x}\ dx=\pi$を示せ

出典:1937年東京帝国大学 入試問題
この動画を見る 

大学入試問題#475「エフ(f)3つ!」 早稲田大学(2004) #逆関数

アイキャッチ画像
単元: #大学入試過去問(数学)#積分とその応用#定積分#学校別大学入試過去問解説(数学)#早稲田大学#数学(高校生)#数Ⅲ
指導講師: ますただ
問題文全文(内容文):
実数$a$に対して
$f(x)=ax+2$とする
$f(f(f(x)))$が$f(x)$の逆関数になるような$a$の値を求めよ。

出典:2004年早稲田大学理工 入試問題
この動画を見る 
PAGE TOP