1次関数の文章題の解き方 - 質問解決D.B.(データベース)

1次関数の文章題の解き方

問題文全文(内容文):
1次関数の文章題に関して解説していきます。
単元: #数学(中学生)#中2数学#1次関数#文章題#文章題その他
指導講師: 【楽しい授業動画】あきとんとん
問題文全文(内容文):
1次関数の文章題に関して解説していきます。
投稿日:2025.11.24

<関連動画>

【高校受験対策】数学-死守9

アイキャッチ画像
単元: #数学(中学生)#中1数学#中2数学#中3数学#方程式#式の計算(単項式・多項式・式の四則計算)#連立方程式#2次方程式#円#表とグラフ#表とグラフ・集合
指導講師: とある男が授業をしてみた
問題文全文(内容文):
次の各問に答えよ.

①$- 7 + 8 \times \left(-\dfrac{1}{4}\right)$を計算せよ.

②$9(a + b) - (a + 3b) $を計算せよ.

③$(\sqrt7 + 6)(\sqrt7 - 2)$ を計算せよ.

④一次方程式$ x - 5 = 3x + 1 $を解け.

⑤連立方程式
$\begin{eqnarray}
\left\{
\begin{array}{l}
4x-y=9 \\
x-6y=8
\end{array}
\right.
\end{eqnarray}$

⑥一次方程式 $x ^ 2 - 12x + 35 = 0 $を解け.

⑦右の表は,
ある中学校の3年生男子全体のハンドボール投げの記録を,
度数分布表に整理したものである.
26m以上投げた生徒の人数は,
3年生男子全体の何%か.

⑧右の図で,2点$C,D$は,線分$AB$を直径とする半円$O$の
$\stackrel{\huge\frown}{AB}$上にある点で,
$\stackrel{\huge\frown}{AC}=\dfrac{4}{9}\stackrel{\huge\frown}{AB},\stackrel{\huge\frown}{BD}=\dfrac{1}{3}\stackrel{\huge\frown}{AB}$である.
線分$AD$と線分$BC$の交点を$E$とするとき,
$\angle AEC$の大きさは何度か.

図は動画内を参照
この動画を見る 

【中2 数学】  2-②② 連立方程式の利用(食塩水)

アイキャッチ画像
単元: #数学(中学生)#中2数学#連立方程式
指導講師: とある男が授業をしてみた
問題文全文(内容文):
中2 数学 連立方程式の利用(食塩水)
次の問に答えよ
① $190$ gの水に $10$ gの食塩をとかしたとき、食塩水の濃度は?
② $7$ %の食塩水 $300$ gにとけている食塩は?
③ $8$ %と $15$ %の食塩水をまぜて、$10$ %の食塩水を $700$ g作ります。
 それぞれ何g必要か?
この動画を見る 

【ルールを抑えるのが大切!】文字式:福岡大学附属大濠高等学校~全国入試問題解法

アイキャッチ画像
単元: #数学(中学生)#中2数学#式の計算(単項式・多項式・式の四則計算)#高校入試過去問(数学)#福岡大学附属大濠高等学校
指導講師: 高校入試から見た数学の世界「全部入試問題」by しろたん
問題文全文(内容文):
$ \left(\dfrac{2x+5y}{3}-\dfrac{x+7y}{6}\right)\div \dfrac{xy}{2}$を計算し,簡単にすると$ \Box $である.

福岡大学附属大濠高等学校過去問
この動画を見る 

【そう考えるか…!】連立方程式:東京都立国立高等学校~全国入試問題解法

単元: #数学(中学生)#中2数学#連立方程式#高校入試過去問(数学)#東京都立国立高等学校
指導講師: 高校入試から見た数学の世界「全部入試問題」by しろたん
問題文全文(内容文):
連立方程式
$\begin{equation}
\left\{ \,
\begin{aligned}
& \frac{3}{2}x-\frac{2}{3}y = 20 \\
& -\frac{2}{3}x+\frac{3}{2}y = 20
\end{aligned}
\right.
\end{equation}\;$を解け。
この動画を見る 

【テスト対策 中2】6章-1

アイキャッチ画像
単元: #数学(中学生)#中2数学#確率#場合の数#場合の数
指導講師: とある男が授業をしてみた
問題文全文(内容文):
①$\boxed{1},\boxed{1},\boxed{1},\boxed{2},\boxed{3}$の5枚のカードから2枚取り出して
2桁の整数をつくるとき、 奇数となるのは全部で何通りか求めなさい。

②$\boxed{1},\boxed{1},\boxed{1},\boxed{2},\boxed{3}$の5枚のカードから3枚取り出して
3桁の整数をつくるとき、 奇数となるのは全部で何通りか求めなさい。

図は動画内参照
この動画を見る 
PAGE TOP