09高知県教員採用試験(数学:1-(4) 不定形の極限) - 質問解決D.B.(データベース)

09高知県教員採用試験(数学:1-(4) 不定形の極限)

問題文全文(内容文):
$\boxed{1}-(4)$
$\displaystyle \lim_{x\to 3}\dfrac{ax+b}{\sqrt{x+1}-2}=4$のとき,
定数$a,b$の値を求めよ.
単元: #数Ⅱ#微分法と積分法#平均変化率・極限・導関数#その他#数学(高校生)#教員採用試験
指導講師: ますただ
問題文全文(内容文):
$\boxed{1}-(4)$
$\displaystyle \lim_{x\to 3}\dfrac{ax+b}{\sqrt{x+1}-2}=4$のとき,
定数$a,b$の値を求めよ.
投稿日:2021.07.29

<関連動画>

15岡山県教員採用試験(数学:2次方程式)

アイキャッチ画像
単元: #数Ⅰ#2次関数#2次方程式と2次不等式#その他#数学(高校生)#教員採用試験
指導講師: ますただ
問題文全文(内容文):
$kx^2-4x+k-3=0$が異なる2つの実数解をもつ.
$k$の値の範囲を求めよ.
この動画を見る 

17神奈川県教員採用試験(数学:1番 式変形)

アイキャッチ画像
単元: #数Ⅰ#数と式#式の計算(整式・展開・因数分解)#その他#数学(高校生)#教員採用試験
指導講師: ますただ
問題文全文(内容文):
1⃣$x=\frac{3+\sqrt{13}}{2}$のとき
$x^3-\frac{1}{x^3}$を求めよ。
この動画を見る 

06愛知県教員採用試験(数学8-(2) 極限)

アイキャッチ画像
単元: #数Ⅱ#微分法と積分法#平均変化率・極限・導関数#その他#数学(高校生)#教員採用試験
指導講師: ますただ
問題文全文(内容文):
$\boxed{8}-(2)$

$\displaystyle \lim_{x\to\infty} \ x\log \left(1+\dfrac{3}{x}\right)$を求めよ.
この動画を見る 

15東京都教員採用試験(数学:1-(7) 三角関数)

アイキャッチ画像
単元: #数Ⅱ#三角関数#その他#数学(高校生)#教員採用試験
指導講師: ますただ
問題文全文(内容文):
$\boxed{1}-(7)$
$0\leqq \theta \lt 2\pi$
$\sin2\theta-\cos2\theta+2(\sin\theta+\cos\theta)+1=0$を解け.
この動画を見る 

07大阪府教員採用試験(数学:3番 微分積分)

アイキャッチ画像
単元: #その他#数学(高校生)#教員採用試験
指導講師: ますただ
問題文全文(内容文):
$\boxed{3}$
$c:f(x)=\dfrac{\log x}{x}$

原点から曲線$c$に引いた接線を$\ell$とする.
曲線$c$,直線$\ell$,$x$軸で囲まれた面積$S$を求めよ.
この動画を見る 
PAGE TOP