慶應義塾の連立方程式 B - 質問解決D.B.(データベース)

慶應義塾の連立方程式 B

問題文全文(内容文):
$
\begin{eqnarray}
\left\{
\begin{array}{l}
\frac{5}{x-\sqrt 2}+ \frac{2}{x+\sqrt 2y}=1\\
\frac{1}{x-\sqrt 2}+ \frac{5}{x+\sqrt 2y}=2
\end{array}
\right.
\end{eqnarray}
$

2021慶應義塾高等学校
単元: #数学(中学生)#中2数学#連立方程式#高校入試過去問(数学)
指導講師: 数学を数楽に
問題文全文(内容文):
$
\begin{eqnarray}
\left\{
\begin{array}{l}
\frac{5}{x-\sqrt 2}+ \frac{2}{x+\sqrt 2y}=1\\
\frac{1}{x-\sqrt 2}+ \frac{5}{x+\sqrt 2y}=2
\end{array}
\right.
\end{eqnarray}
$

2021慶應義塾高等学校
投稿日:2021.02.22

<関連動画>

中学数学の重要度ランキング

アイキャッチ画像
単元: #数学(中学生)#中1数学#中2数学#中3数学
指導講師: 【楽しい授業動画】あきとんとん
問題文全文(内容文):
中学数学の重要度ランキング
この動画を見る 

【中学数学】連立方程式の文章題の宿題Live【中2夏期講習③】

アイキャッチ画像
単元: #数学(中学生)#中2数学#連立方程式
指導講師: 【楽しい授業動画】あきとんとん
問題文全文(内容文):
(1)2つの整数がある。大きい数の3倍と小さい数の和は6になる。また、大きい数から小さい数の和は6になる。また、大きい数から小さい数の2倍を引いた差は23になる。大きい数と小さい数をそれぞれ求めよ。
(2)とんとんは学校から2000 m離れた図書館まで行く。はじめは分速70 mで歩き、途中から分速100 mで走ると、26分かかった。このとき、とんとんが歩いた道のりと走った道のりをそれぞれ求めよ。
(3)昨年の全校生徒は490人だった。昨年に比べて今年は男子が8%へり、女子が5%ふえ、全体で8人減った。今年の男子、女子のそれぞれの人数を求めよ。
(4)百の位が3である3桁の自然数がある。この自然数の各位の数の和は16で、十の位の数と一の位の数を入れ替えてできる数はもとの数より9大きくなる。もとの自然数を求めよ。
この動画を見る 

【中学数学】連立方程式の文章題基礎~受験問題で演習~ 2-3【中2数学】

アイキャッチ画像
単元: #数学(中学生)#中2数学#連立方程式
指導講師: 【楽しい授業動画】あきとんとん
問題文全文(内容文):
1⃣
ある店では、チョコレート1個54円、あめが1個81円で売られている。
また、1個の重さは、チョコレートが20g、あめが12gである。
このチョコレートとあめをそれぞれ何個か買ったところ、代金は全部で432円、
全体の重さは124gであった。
チョコレートとあめをそれぞれ何個買ったか求めよ。

2⃣
ある中学校でボランティア活動に参加したことがある生徒は、1年生では1年生
全体の25%、2年生では2年生全体の30%、3年生では3年生全体の40%で、学校全体
では生徒全体の32%である。
また、この中学校の生徒数は、3年生は2年生より15人多く、1年生は240人である。
この中学校の2年生と3年生の生徒数を求めよ。

3⃣
2けたの自然数がある。
この自然数の十の位の数と一の位の数の和は、一の位の数の4倍よりも8小さい。
また、十の位の数と一の位の数を入れかえてできる2けたの自然数と、もとの
自然数との和は132である。もとの自然数を求めよ。
この動画を見る 

【中学数学・数A】中高一貫校問題集2(代数編)269:確率と標本調査:確率の計算:じゃんけん A,B,Cの3人がじゃんけんを1回行うとき、次の問いに答えよう。(問題文全文は概要欄を見てね)

単元: #数学(中学生)#中2数学#確率
教材: #TK数学#TK数学問題集2(代数編)#中高教材
指導講師: 理数個別チャンネル
問題文全文(内容文):
A,B,Cの3人がじゃんけんを1回行うとき、次の問いに答えよう。
(1)手の出し方は、何通りあるか求めよう。
(2)全員が同じ手を出して、引き分けとなる確率を求めよう。
(3)Aだけが勝つ確率を求めよう。
(4)1人だけが負ける確率を求めよう。
この動画を見る 

【数学】中2-49 三角形の内角と外角② 応用編

アイキャッチ画像
単元: #数学(中学生)#中2数学#三角形と四角形
指導講師: とある男が授業をしてみた
問題文全文(内容文):
$\angle x$の大きさをもとめよう!



④$\angle B,\angle C$の二等分線の交点をDとする。
※図は動画内参照
この動画を見る 
PAGE TOP