問題文全文(内容文):
直線 $r(\sqrt{3}\cos\theta+\sin\theta)=4$、
$r(\sqrt{3}\cos\theta-\sin\theta)=2$
の交点の極座標を求めよ。
また、この 2 直線のなす角を求めよ。
直線 $r(\sqrt{3}\cos\theta+\sin\theta)=4$、
$r(\sqrt{3}\cos\theta-\sin\theta)=2$
の交点の極座標を求めよ。
また、この 2 直線のなす角を求めよ。
チャプター:
0:00 問題概要
0:18 直交座標に変形して計算
0:58 交点を極座標で表す
1:53 別解 極方程式のまま解く方法
3:10 cosへの合成
単元:
#平面上の曲線#媒介変数表示と極座標#数学(高校生)#数C
教材:
#4S数学#中高教材#4S数学CのB問題解説#式と曲線
指導講師:
理数個別チャンネル
問題文全文(内容文):
直線 $r(\sqrt{3}\cos\theta+\sin\theta)=4$、
$r(\sqrt{3}\cos\theta-\sin\theta)=2$
の交点の極座標を求めよ。
また、この 2 直線のなす角を求めよ。
直線 $r(\sqrt{3}\cos\theta+\sin\theta)=4$、
$r(\sqrt{3}\cos\theta-\sin\theta)=2$
の交点の極座標を求めよ。
また、この 2 直線のなす角を求めよ。
投稿日:2026.02.21





