福田の数学〜東京医科歯科大学2024医学部第3問〜定積分の性質と置換積分の計算の解 - 質問解決D.B.(データベース)

福田の数学〜東京医科歯科大学2024医学部第3問〜定積分の性質と置換積分の計算の解

問題文全文(内容文):
$\fbox{3} f(x)$を連続関数とするとき、次の各問いに答えよ。
(1)次の等式を示せ。$\displaystyle \int_{0}^{ \frac{\pi}{2} } f(\sin 2x)\sin x dx=\displaystyle \int_{0}^{ \frac{\pi}{2} } f(\sin 2x)\cos x dx$
(2)次の等式を示せ。$\displaystyle \int_{0}^{ \frac{\pi}{2} } f(\sin 2x)(\sin x+\cos x) dx=\displaystyle \int_{-1}^{1} f(1-t^2)dt$
(3)次の定積分の値を求めよ。$\displaystyle \int_{0}^{ \frac{\pi}{2} } \frac{\sin x}{1+\sqrt{\sin 2x}} dx$
単元: #大学入試過去問(数学)#積分とその応用#定積分#学校別大学入試過去問解説(数学)#数学(高校生)#数Ⅲ#東京医科歯科大学
指導講師: 福田次郎
問題文全文(内容文):
$\fbox{3} f(x)$を連続関数とするとき、次の各問いに答えよ。
(1)次の等式を示せ。$\displaystyle \int_{0}^{ \frac{\pi}{2} } f(\sin 2x)\sin x dx=\displaystyle \int_{0}^{ \frac{\pi}{2} } f(\sin 2x)\cos x dx$
(2)次の等式を示せ。$\displaystyle \int_{0}^{ \frac{\pi}{2} } f(\sin 2x)(\sin x+\cos x) dx=\displaystyle \int_{-1}^{1} f(1-t^2)dt$
(3)次の定積分の値を求めよ。$\displaystyle \int_{0}^{ \frac{\pi}{2} } \frac{\sin x}{1+\sqrt{\sin 2x}} dx$
投稿日:2024.08.20

<関連動画>

#茨城大学2024#定積分_2#元高校教員

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#微分法と積分法#積分とその応用#定積分#学校別大学入試過去問解説(数学)#不定積分・定積分#数学(高校生)#数Ⅲ#茨城大学
指導講師: ますただ
問題文全文(内容文):
$\displaystyle \int_{-1}^{1} x^3(x+2)^2 dx$

出典:2024年茨城大学後期
この動画を見る 

【数Ⅲ-151】定積分③(レベルアップ編)

アイキャッチ画像
単元: #積分とその応用#定積分#数学(高校生)#数Ⅲ
指導講師: とある男が授業をしてみた
問題文全文(内容文):
数Ⅲ(定積分③・レベルアップ編)

Q.次の定積分を求めよ。

①$\int_{\frac{\pi}{6}}^\frac{\pi}{2} sinx \ sin3x\ dx$

➁$\int_{0}^\pi |cosx |\ dx$

③$\int_{0}^\pi |sinx -\sqrt{3}\ cosx|\ dx$
この動画を見る 

大学入試問題#179 秋田県立大学(2004) 定積分 ウォリス積分①

アイキャッチ画像
単元: #積分とその応用#定積分#数学(高校生)#数Ⅲ
指導講師: ますただ
問題文全文(内容文):
$\displaystyle \int_{0}^{1}(1-x^2)^3 dx$

出典:2004年秋田県立大学 入試問題
この動画を見る 

福田の1.5倍速演習〜合格する重要問題032〜千葉大学2016年度理系第8問〜不等式の証明

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#式と証明#恒等式・等式・不等式の証明#微分とその応用#積分とその応用#微分法#定積分#学校別大学入試過去問解説(数学)#千葉大学#数学(高校生)#数Ⅲ
指導講師: 福田次郎
問題文全文(内容文):
以下の問いに答えよ。
(1)$x \gt 0$において、不等式$\log x \lt x $を示せ。
(2)$1 \lt a \lt b$のとき、不等式
$\frac{1}{\log a}-\frac{1}{\log b} \lt \frac{b-a}{a(\log a)^2}$
を示せ。
(3)$x \geqq e$において、不等式
$\int_e^x\frac{dt}{t\log(t+1)} \geqq \log(\log x)+\frac{1}{2(\log x)^2}-\frac{1}{2}$
を示せ。ただし、eは自然対数の底である。

2016千葉大学理系過去問
この動画を見る 

大学入試問題#781「絶対値付きの積分は、なんか苦手!」 久留米大学医学部(2005) #定積分

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#微分法と積分法#積分とその応用#定積分#学校別大学入試過去問解説(数学)#不定積分・定積分#数学(高校生)#数Ⅲ#久留米大学
指導講師: ますただ
問題文全文(内容文):
$\displaystyle \int_{0}^{\frac{\pi}{2}} |\sin\ x-2\sin\ 2x|\ dx$

出典:2005年久留米大学医学部 入試問題
この動画を見る 
PAGE TOP