大学入試問題#452「解き方は色々とあるかと思います」 横浜国立大学(2002) #定積分 - 質問解決D.B.(データベース)

大学入試問題#452「解き方は色々とあるかと思います」 横浜国立大学(2002) #定積分

問題文全文(内容文):
$\displaystyle \int_{0}^{a} log(a^2+x^2) dx$

出典:2002年横浜国立大学 入試問題
単元: #大学入試過去問(数学)#対数関数#積分とその応用#定積分#学校別大学入試過去問解説(数学)#横浜国立大学#数学(高校生)#数Ⅲ
指導講師: ますただ
問題文全文(内容文):
$\displaystyle \int_{0}^{a} log(a^2+x^2) dx$

出典:2002年横浜国立大学 入試問題
投稿日:2023.02.13

<関連動画>

【n進法】同じ桁数になるようなもの?【京都大学】

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#指数関数と対数関数#対数関数#学校別大学入試過去問解説(数学)#京都大学#数学(高校生)
指導講師: 数学・算数の楽しさを思い出した / Ken
問題文全文(内容文):
ある自然数を八進法、九進法、十進法でそれぞれ表したとき、桁数がすべて同じになった。このような自然数で最大のものを求めよ。ただし、必要なら次を用いてよい。
0.3010<log₁₀2<0.3011 , 0.4771<log₁₀3<0.4772
この動画を見る 

福田の1.5倍速演習〜合格する重要問題072〜上智大学2019年度理工学部第3問〜ガウス記号で定義された数列

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#指数関数と対数関数#対数関数#数列#数列とその和(等差・等比・階差・Σ)#学校別大学入試過去問解説(数学)#上智大学#数学(高校生)#数B
指導講師: 福田次郎
問題文全文(内容文):
$\Large{\boxed{3}}$ $\alpha=\log_23$とし、自然数nに対して
$a_n=[n\alpha]$, $b_n=\left[\displaystyle\frac{n\alpha}{\alpha-1}\right]$
とする。ただし、実数xに対して[x]はxを超えない最大の整数を表す。
(1)$a_5=\boxed{\ \ ス\ \ }$である。
(2)$b_3=k$とおくと、不等式$\displaystyle\frac{3^{k+c}}{2^k} \leqq 1 \lt \frac{3^{k+1+c}}{2^{k+1}}$が整数$c=\boxed{\ \ セ\ \ }$で成り立ち、
$b_3=\boxed{\ \ ソ\ \ }$であることがわかる。
(3)$a_n \leqq$ 10を満たす自然数nの個数は$\boxed{\ \ タ\ \ }$である。
(4)$b_n \leqq$ 10を満たす自然数nの個数は$\boxed{\ \ チ\ \ }$である。
(5)$a_n \leqq$ 50を満たす自然数nの個数をsとし、$b_n \leqq$ 50を満たす自然数nの個数をtとする。このとき、s+t=$\boxed{\ \ ツ\ \ }$である。

2019上智大学理工学部過去問
この動画を見る 

指数・対数の基本問題

アイキャッチ画像
単元: #数Ⅱ#指数関数と対数関数#指数関数#対数関数#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
$
\begin{eqnarray}
&&3^a=7^b=441\\
&&\frac{ab}{a+b} = ?

\end{eqnarray}
$
この動画を見る 

【高校数学】 数Ⅱ-136 対数関数②・性質編

アイキャッチ画像
単元: #数Ⅱ#指数関数と対数関数#対数関数#数学(高校生)
指導講師: とある男が授業をしてみた
問題文全文(内容文):
◎次の数の大小を不等号を用いて表そう。

①$\log_32,\log_37,\log_34$

②$\log_{0.3}2,\log_{0.3}7,\log_{0.3}4$

③$\log_32,\log_96,\displaystyle \frac{1}{2}$

④$\log_{\frac{1}{2}}3,\log_{\frac{1}{4}}10,\log_{\frac{1}{8}}1$
この動画を見る 

【数Ⅱ】【指数関数と対数関数】対数不等式2 ※問題文は概要欄

アイキャッチ画像
単元: #数Ⅱ#指数関数と対数関数#対数関数#数学(高校生)
教材: #4S数学#4S数学Ⅱ+BのB問題解説(新課程2022年以降)#指数関数と対数関数#中高教材
指導講師: 理数個別チャンネル
問題文全文(内容文):
次の関数の最大値、最小値があれば、それを求めよ。
また、そのときの $x$ の値を求めよ。
(1) $y = (\log_{3}{x})^2 + 2\log_{3}{x}$
(2) $y = \left( \log_{2}{\frac{4}{x}} \right) \left( \log_{2}{\frac{x}{2}} \right)$
(3) $y = (\log_{3}{x})^2 - 4\log_{3}{x} + 3 \quad (1 \leq x \leq 27)$

関数 $y = \log_{\frac{1}{3}}{x} + \log_{\frac{1}{3}}{(6 - x)}$ の最小値を求めよ。

$a > 0$, $b > 0$ のとき、不等式

$\log_{2} (a + \frac{1}{b}) + \log_{2} (b + \frac{1}{a}) \geq 2$

を証明せよ。
この動画を見る 
PAGE TOP