福田の数学〜上智大学2021年TEAP利用文系第1問(1)〜指数方程式と常用対数 - 質問解決D.B.(データベース)

福田の数学〜上智大学2021年TEAP利用文系第1問(1)〜指数方程式と常用対数

問題文全文(内容文):
\begin{eqnarray}
{\Large\boxed{1}} (1)\ sを正の実数として、x,yの連立方程式\\
\\
\left\{
\begin{array}{1}
4^x+9^y=5\\
2^x・3^y=s\\
\end{array}
\right.\\
\\
を考える。以下では\log_{10}2=0.301,\\
\log_{10}3=0.4771として計算せよ。\\
\\
(\textrm{a})\ この連立方程式の解が2組あるための必要十分条件は\\
\\
0 \lt s \lt \frac{\boxed{\ \ ア\ \ }}{\boxed{\ \ イ\ \ }}\\
\\
である。\\
\\
(\textrm{b})\ s=2のときx \lt yとなる解を(x_0,\ y_0)とする。\\
y_0を小数第3位で四捨五入した数の整数部分は\boxed{\ \ ウ\ \ }、\\
小数第1位は\boxed{\ \ エ\ \ }、小数第2位は\boxed{\ \ オ\ \ }である。
\end{eqnarray}

2021上智大学文系過去問
単元: #数Ⅱ#大学入試過去問(数学)#複素数と方程式#指数関数と対数関数#剰余の定理・因数定理・組み立て除法と高次方程式#指数関数#対数関数#学校別大学入試過去問解説(数学)#上智大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
\begin{eqnarray}
{\Large\boxed{1}} (1)\ sを正の実数として、x,yの連立方程式\\
\\
\left\{
\begin{array}{1}
4^x+9^y=5\\
2^x・3^y=s\\
\end{array}
\right.\\
\\
を考える。以下では\log_{10}2=0.301,\\
\log_{10}3=0.4771として計算せよ。\\
\\
(\textrm{a})\ この連立方程式の解が2組あるための必要十分条件は\\
\\
0 \lt s \lt \frac{\boxed{\ \ ア\ \ }}{\boxed{\ \ イ\ \ }}\\
\\
である。\\
\\
(\textrm{b})\ s=2のときx \lt yとなる解を(x_0,\ y_0)とする。\\
y_0を小数第3位で四捨五入した数の整数部分は\boxed{\ \ ウ\ \ }、\\
小数第1位は\boxed{\ \ エ\ \ }、小数第2位は\boxed{\ \ オ\ \ }である。
\end{eqnarray}

2021上智大学文系過去問
投稿日:2021.08.29

<関連動画>

指数対数 数Ⅱ 指数関数グラフ、方程式【ゆう☆たろうがていねいに解説】

アイキャッチ画像
単元: #数Ⅱ#指数関数と対数関数#指数関数#数学(高校生)
教材: #4S数学#4S数学Ⅱ+BのB問題解説(新課程2022年以降)#指数関数と対数関数#中高教材
指導講師: 理数個別チャンネル
問題文全文(内容文):
次の関数のグラフをかけ


(1)$y=2^{x+1}$
(2)$y=(\dfrac{1}{5})^{x-1}$
(3)$y=4・2^x$
(4)$y=3^x-1$
次の数の大小を不等号を用いて表せ
(1)$2^\frac{1}{2}$ $3^\frac{1}{3}$ $7^\frac{1}{6}$
(2)$2^{30}$ $3^{20}$ $10^{10}$
次の方程式,不等式を解け
(1)$4^x+2^{x+1}-24=0$
(2)$10^{2x}+10^x=2$
(3)$9^{x+1}-28・3^x+3=0$
(4)$16^x-3・4^x-4≧0$
(5)$(\dfrac{1}{9})^x-\dfrac{1}{3^x}-6<0$
(6)$(\dfrac{1}{4})^{x-1}-9・(\dfrac{1}{2})^x+2>0$
次の関数の最大値,最小値があれば,それを求めよまた,そのときのxの値を求めよ
(1)$y=2^{2x}-4・2^x+1$
(2)$y=-4^x+2^x+2$$(-1≦x≦2)$
この動画を見る 

高知大 筑波大 指数方程式 漸化式 Mathematics Japanese university entrance exam

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#指数関数と対数関数#指数関数#数列#漸化式#学校別大学入試過去問解説(数学)#数学(高校生)#高知大学#筑波大学#数B
指導講師: 鈴木貫太郎
問題文全文(内容文):
高知大学過去問題
$f(x)=x^4+4^{-x}-2^{2+x}-2^{2-x}+2$
①f(x)の最小値とそのときのxの値
②f(x)=0を解け

筑波大学過去問題
$(5+\sqrt2)^n=a_n+b_n\sqrt2 \quad (n自然数)$
$a_n$,$b_n$をnを用いて表せ。
この動画を見る 

やっぱり指数が好き

アイキャッチ画像
単元: #数Ⅱ#指数関数と対数関数#指数関数#数学(高校生)
指導講師: 数学を数楽に
問題文全文(内容文):
$16^x = 49$
$7^y=64$
$(xy)^{xy} = ?$
この動画を見る 

整数問題 2通りの解法で

アイキャッチ画像
単元: #数A#数Ⅱ#整数の性質#約数・倍数・整数の割り算と余り・合同式#指数関数と対数関数#指数関数#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
$n$ 自然数
$7^{2n-1}+9^{2n-1}+47^{2n-1}$
は63の倍数であることを示せ。
この動画を見る 

これ知ってた?

アイキャッチ画像
単元: #数Ⅱ#指数関数と対数関数#指数関数#数学(高校生)
指導講師: 【楽しい授業動画】あきとんとん
問題文全文(内容文):
指数タワーに関して解説していきます.
この動画を見る 
PAGE TOP