大分大 指数 最小値 - 質問解決D.B.(データベース)

大分大 指数 最小値

問題文全文(内容文):
$9^x+\displaystyle \frac{1}{9^x}-4a(3^x+\displaystyle \frac{1}{3^x})$の最小値とその時の$x$の値を求めよ

出典:2018年大分大学 過去問
単元: #数Ⅱ#大学入試過去問(数学)#指数関数と対数関数#指数関数#学校別大学入試過去問解説(数学)#大分大学#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
$9^x+\displaystyle \frac{1}{9^x}-4a(3^x+\displaystyle \frac{1}{3^x})$の最小値とその時の$x$の値を求めよ

出典:2018年大分大学 過去問
投稿日:2020.01.02

<関連動画>

島根大(医)指数方程式 Mathematics Japanese university entrance exam

アイキャッチ画像
単元: #数Ⅰ#数Ⅱ#2次関数#2次関数とグラフ#指数関数と対数関数#指数関数#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
$8^x-a(4^x-1)+b(2^x-1)-1=0$が$0$または負の異なる3つの実数解をもつ

(1)
$a,b$が満たす条件

(2)
$b$の値の範囲は?

出典:1996年島根大学医学部 過去問
この動画を見る 

相加相乗平均のエレガントな証明2通り

アイキャッチ画像
単元: #数Ⅱ#式と証明#指数関数と対数関数#指数関数
指導講師: 鈴木貫太郎
問題文全文(内容文):
$ \dfrac{a_1+a_2+・・・・+a_n}{n}\geqq \sqrt[n]{a_1,a_2・・・・a_n}$
これを求めよ.

この動画を見る 

福田の入試問題解説〜慶應義塾大学2022年理工学部第4問〜指数関数と直線の位置関係と極限

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#指数関数と対数関数#指数関数#関数と極限#微分とその応用#関数の極限#関数の変化(グラフ・最大最小・方程式・不等式)#学校別大学入試過去問解説(数学)#慶應義塾大学#数学(高校生)#数Ⅲ
指導講師: 福田次郎
問題文全文(内容文):
曲線$C:y=e^x$を考える。
(1)$a,b$を実数とし、$a \geqq 0$とする。曲線Cと直線$y=ax+b$が共有点をもつため
のaとbの条件を求めよ。
(2)正の実数tに対し、C上の点$A(t,e^t)$を中心とし、直線$y=x$に接する円Dを
考える。直線$y=x$と円Dの接点Bのx座標は$\boxed{\ \ タ\ \ }$であり、
円Dの半径は$\boxed{\ \ チ\ \ }$である。線分ABを3:2に内分する点をPとし、Pのx座標、y座標
をそれぞれX(t),Y(t)とする。このとき、等式
$\lim_{t \to \infty}\frac{Y(t)-kX(t)}{\sqrt{\left\{X(t)\right\}^2+\left\{Y(t)\right\}^2}}=0$
が成り立つような実数kを定めると$k=\boxed{\ \ ツ\ \ }$である。
ただし、$\lim_{t \to \infty}te^{-t}=0$である。

2022慶應義塾大学理工学部過去問
この動画を見る 

指数のフシギ〜お小遣いの悪魔の交渉術!? #高校数学 #指数 #数列 #shorts

アイキャッチ画像
単元: #数Ⅱ#指数関数と対数関数#指数関数#数学(高校生)
指導講師: 理数個別チャンネル
問題文全文(内容文):
指数のフシギ〜お小遣いの悪魔の交渉術!?
この動画を見る 

解けるように作られた指数方程式

アイキャッチ画像
単元: #数Ⅱ#指数関数と対数関数#指数関数#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
$実数解 $\dfrac{8^x+27^x}{12^x+18^x}=\dfrac{61}{36}$
これを求めよ.

この動画を見る 
PAGE TOP