【数Ⅲ】【積分とその応用】面積9 ※問題文は概要欄 - 質問解決D.B.(データベース)

【数Ⅲ】【積分とその応用】面積9 ※問題文は概要欄

問題文全文(内容文):
座標平面上で、原点$\rm O$から曲線$y=\sin x$へ引いた接線の接点を${\rm T}(\alpha,\sin\alpha)$とする。ただし、$\pi < \alpha < \dfrac32\pi$とする。
(1)$\alpha$の満たす方程式を求めよ。
(2)曲線$y=\sin x$と線分$\rm OT$で囲まれた部分の面積$S$を、$\cos\alpha$で表せ。
チャプター:

0:00 オープニング
0:05 (1)解説
1:35 (2)解説
2:49 エンディング

単元: #積分とその応用#面積・体積・長さ・速度#数学(高校生)#数Ⅲ
指導講師: 理数個別チャンネル
問題文全文(内容文):
座標平面上で、原点$\rm O$から曲線$y=\sin x$へ引いた接線の接点を${\rm T}(\alpha,\sin\alpha)$とする。ただし、$\pi < \alpha < \dfrac32\pi$とする。
(1)$\alpha$の満たす方程式を求めよ。
(2)曲線$y=\sin x$と線分$\rm OT$で囲まれた部分の面積$S$を、$\cos\alpha$で表せ。
投稿日:2025.03.18

<関連動画>

大学入試問題#150 京都大学(1991) 積分の応用

アイキャッチ画像
単元: #大学入試過去問(数学)#積分とその応用#定積分#学校別大学入試過去問解説(数学)#京都大学#数学(高校生)#数Ⅲ
指導講師: ますただ
問題文全文(内容文):
(1)
$a$実数
$e^x \geqq e^a+(x-1)e^a$を示せ

(2)
$\displaystyle \int_{0}^{1}e^{\sin\ \pi\ x}dx \geqq e^{\frac{2}{x}}$を示せ

出典:1991年京都大学 入試問題
この動画を見る 

大学入試問題#249 早稲田大学(2014) #定積分

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#三角関数#三角関数とグラフ#積分とその応用#定積分#学校別大学入試過去問解説(数学)#早稲田大学#数学(高校生)#数Ⅲ
指導講師: ますただ
問題文全文(内容文):
$a,b$を正の定数
$\displaystyle \int_{0}^{2\pi}|a\ \sin\ x+b\ \cos\ x|dx$を求めよ。

出典:2014年早稲田大学 入試問題
この動画を見る 

大学入試問題#524「何も考えず式変形」 福島県立医科大学(2018) #定積分

アイキャッチ画像
単元: #大学入試過去問(数学)#積分とその応用#定積分#学校別大学入試過去問解説(数学)#数学(高校生)#数Ⅲ#福島県立医科大学
指導講師: ますただ
問題文全文(内容文):
$\displaystyle \int_{1}^{e} (log\ x-x)^2 dx$

出典:2018年福島県立医科大学 入試問題
この動画を見る 

大学入試問題#820「初手は見えるが、次の手は?」 #奈良教育大学(2023) #定積分

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#微分法と積分法#積分とその応用#定積分#学校別大学入試過去問解説(数学)#不定積分・定積分#数学(高校生)#奈良教育大学#数Ⅲ
指導講師: ますただ
問題文全文(内容文):
$\displaystyle \int_{0}^{\frac{\pi}{2}} \displaystyle \frac{\cos^3\ x}{\sqrt{ 1+\sin^2 }} dx$

出典:2023年奈良教育大学 入試問題
この動画を見る 

福田の1.5倍速演習〜合格する重要問題085〜慶應義塾大学2020年度理工学部第4問〜定積分で表された関数

アイキャッチ画像
単元: #大学入試過去問(数学)#微分とその応用#積分とその応用#微分法#定積分#学校別大学入試過去問解説(数学)#慶應義塾大学#数学(高校生)#数Ⅲ
指導講師: 福田次郎
問題文全文(内容文):
$\Large\boxed{1}$ 実数全体で定義された連続な関数f(x)に対し、
$g(x)$=$\displaystyle\int_0^{2x}e^{-f(t-x)}dt$
とおく。
(1)f(x)=xのとき、g(x)=$\boxed{\ \ ソ\ \ }$である。
(2)実数全体で定義された連続な関数f(x)に対し、g(x)は奇関数であることを示しなさい。
(3)f(x)=$\sin x$のとき、g(x)の導関数g'(x)を求めると、g'(x)=$\boxed{\ \ タ\ \ }$である。
(4)f(x)が偶関数であり、g(x)=$x^3$+3xとなるとき、f(x)=$\boxed{\ \ チ\ \ }$である。このとき、$\displaystyle\int_0^1f(x)dx$の値は$\boxed{\ \ ツ\ \ }$である。

2020慶應義塾大学理工学部過去問
この動画を見る 
PAGE TOP