広島県立大 漸化式 - 質問解決D.B.(データベース)

広島県立大 漸化式

問題文全文(内容文):
$a_n \gt 0,S_n=\displaystyle \sum_{k=1}^n a_k$
$a_1^3+a_2^3・・・・・・+a_n^3=2S_n^2$とする.

(1)$a_n^2+2a_n=4S_n$を示せ.
(2)$a_n$を$n$の式で表せ.

1996広島県立大過去問
単元: #数列#漸化式#数学(高校生)#数B
指導講師: 鈴木貫太郎
問題文全文(内容文):
$a_n \gt 0,S_n=\displaystyle \sum_{k=1}^n a_k$
$a_1^3+a_2^3・・・・・・+a_n^3=2S_n^2$とする.

(1)$a_n^2+2a_n=4S_n$を示せ.
(2)$a_n$を$n$の式で表せ.

1996広島県立大過去問
投稿日:2020.07.08

<関連動画>

群馬大 複素数 数列の和

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#複素数と方程式#複素数#数列#数列とその和(等差・等比・階差・Σ)#学校別大学入試過去問解説(数学)#数学(高校生)#群馬大学#数B
指導講師: 鈴木貫太郎
問題文全文(内容文):
$Z=\displaystyle \frac{-1+\sqrt{ 3 }i}{2}$

$Z+2Z^2+3Z^3+4Z^4+…+19Z^{19}+20Z^{20}$

出典:群馬大学 過去問
この動画を見る 

2022都立入試 整数問題証明(11の倍数)

アイキャッチ画像
単元: #数学(中学生)#数A#数Ⅱ#式と証明#整数の性質#約数・倍数・整数の割り算と余り・合同式#恒等式・等式・不等式の証明#数列#数列とその和(等差・等比・階差・Σ)#高校入試過去問(数学)#数B
指導講師: 鈴木貫太郎
問題文全文(内容文):
2022都立入試 整数問題証明に関して解説していきます.
この動画を見る 

福田の1.5倍速演習〜合格する重要問題003〜北海道大学2015年文系数学第4問〜隣り合う順列、隣り合わない順列

アイキャッチ画像
単元: #数A#大学入試過去問(数学)#場合の数と確率#確率#数列#学校別大学入試過去問解説(数学)#数学(高校生)#北海道大学
指導講師: 福田次郎
問題文全文(内容文):
ジョーカーを除く1組52枚のトランプのカードを1列に並べる思考を考える。
(1)番号7のカードが4枚連続して並ぶ確率を求めよ。
(2)番号7のカードが2枚ずつ隣り合い、4枚連続しては並ばない確率を求めよ。

8人の人が一列に並ぶとき、
(1)A,B,Cの3人が連続して並ぶ場合の数を求めよ。
(2)A,B,Cの3人が隣りあわないように並ぶ場合の数を求めよ。

2015北海道大学文系過去問
この動画を見る 

階乗の方程式

アイキャッチ画像
単元: #数A#整数の性質#ユークリッド互除法と不定方程式・N進法#数列#数列とその和(等差・等比・階差・Σ)#数学(高校生)#数B
指導講師: 数学を数楽に
問題文全文(内容文):
$\frac{(x^2-1)!}{x^2-1} = 23!$のとき
x=?
この動画を見る 

ヨビノリたくみ 東大入試問題解説

アイキャッチ画像
単元: #大学入試過去問(数学)#数列#漸化式#学校別大学入試過去問解説(数学)#東京大学#数学(高校生)#数B
指導講師: 鈴木貫太郎
問題文全文(内容文):
$a_{n}=\displaystyle \frac{{}_{ 2n+1 } C_n}{n!}$n自然数

(1)
$n \geqq 2,\displaystyle \frac{a_{n}}{a_{n-1}}$を既約分数$\displaystyle \frac{q_{n}}{p_{n}}$と表す。$(p_{n} \geqq 1)$
$p_{n},q_{n}$を求めよ

(2)
$a_{n}$が整数となる$n(n \geqq 1)$を全て求めよ

出典:2018年東京大学 入試問題
この動画を見る 
PAGE TOP