福田の数学〜上智大学2022年理工学部第3問〜複素数平面上の点列と三角形の相似 - 質問解決D.B.(データベース)

福田の数学〜上智大学2022年理工学部第3問〜複素数平面上の点列と三角形の相似

問題文全文(内容文):
複素数からなる数列znを、次の条件で定める。
z1=0,   zn+1=(1+i)zni   (i=1,2,3,  ...)
正の整数nに対し、z_nに対応する負素数平面上の点をA_nとおく。
(1)z2=+ i,   z3=+
 i,   z4=+ iである。
(2)r>0, 0θ<2π を用いて、1+i=r(cosθ+isinθ)のように1+iを極形式で
表すとき、r=, θ=πである。
(3)すべての正の整数nに対するPAnAn+1が互いに相似になる点Pに対応する
複素数は、+ iである。
(4)|zn|>1000となる最小のnはn=である。
(5)A2022+kが実軸上にある最小の正の整数kはk=である。

2022上智大学理工学部過去問
単元: #大学入試過去問(数学)#複素数平面#相似な図形#数列#漸化式#複素数平面#図形への応用#学校別大学入試過去問解説(数学)#上智大学#数学(高校生)#数B#数C
指導講師: 福田次郎
問題文全文(内容文):
複素数からなる数列znを、次の条件で定める。
z1=0,   zn+1=(1+i)zni   (i=1,2,3,  ...)
正の整数nに対し、z_nに対応する負素数平面上の点をA_nとおく。
(1)z2=+ i,   z3=+
 i,   z4=+ iである。
(2)r>0, 0θ<2π を用いて、1+i=r(cosθ+isinθ)のように1+iを極形式で
表すとき、r=, θ=πである。
(3)すべての正の整数nに対するPAnAn+1が互いに相似になる点Pに対応する
複素数は、+ iである。
(4)|zn|>1000となる最小のnはn=である。
(5)A2022+kが実軸上にある最小の正の整数kはk=である。

2022上智大学理工学部過去問
投稿日:2022.10.19

<関連動画>

高知大 筑波大 指数方程式 漸化式 Mathematics Japanese university entrance exam

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#指数関数と対数関数#指数関数#数列#漸化式#学校別大学入試過去問解説(数学)#数学(高校生)#高知大学#筑波大学#数B
指導講師: 鈴木貫太郎
問題文全文(内容文):
高知大学過去問題
f(x)=x4+4x22+x22x+2
①f(x)の最小値とそのときのxの値
②f(x)=0を解け

筑波大学過去問題
(5+2)n=an+bn2(n)
an,bnをnを用いて表せ。
この動画を見る 

【数B】数列:数列1,2,3, …,m(mは自然数)において、相異なる2数の積の総和を求めよ。95東工大,07筑波大,青山学院などで出題された問題です!

アイキャッチ画像
単元: #数列#数列とその和(等差・等比・階差・Σ)#数学(高校生)
指導講師: 理数個別チャンネル
問題文全文(内容文):
数列1,2,3, …,m(mは自然数)において、相異なる2数の積の総和を求めよ。
この動画を見る 

数学「大学入試良問集」【13−7 数学的帰納法(13の倍数の証明)】を宇宙一わかりやすく

アイキャッチ画像
単元: #大学入試過去問(数学)#数列#数学的帰納法#学校別大学入試過去問解説(数学)#数学(高校生)#信州大学#数B
指導講師: ハクシ高校【数学科】良問演習チャンネル
問題文全文(内容文):
nを自然数とするとき、42n1+3n+113の倍数であることを示せ。
この動画を見る 

連立漸化式

アイキャッチ画像
単元: #数列#漸化式#数学(高校生)#数B
指導講師: 鈴木貫太郎
問題文全文(内容文):
a1=b1=1
{an+1=7an+6bn+4bn+1=4an3bn2
この動画を見る 

階乗の方程式

アイキャッチ画像
単元: #数A#整数の性質#ユークリッド互除法と不定方程式・N進法#数列#数列とその和(等差・等比・階差・Σ)#数学(高校生)#数B
指導講師: 数学を数楽に
問題文全文(内容文):
(x21)!x21=23!のとき
x=?
この動画を見る 
PAGE TOP preload imagepreload image