福田の数学〜上智大学2022年理工学部第3問〜複素数平面上の点列と三角形の相似 - 質問解決D.B.(データベース)

福田の数学〜上智大学2022年理工学部第3問〜複素数平面上の点列と三角形の相似

問題文全文(内容文):
複素数からなる数列${z_n}$を、次の条件で定める。
$z_1=0,\ \ \ z_{n+1}=(1+i)z_n-i \ \ \ (i=1,2,3, \ \ ...)$
正の整数nに対し、z_nに対応する負素数平面上の点をA_nとおく。
(1)$z_2=\boxed{ツ }+\boxed{ツ }\ i, \ \ \ z_3=\boxed{ト}+$
$\boxed{ナ}\ i,\ \ \ z_4=\boxed{二}+\boxed{ヌ}\ i $である。
(2)$r \gt 0,\ 0 \leqq θ \lt 2\pi$ を用いて、$1+i=r(\cos θ+i\sin θ)$のように$1+i$を極形式で
表すとき、$r=\sqrt{\boxed{ネ}},\ θ=\frac{\boxed{ノ }}{\boxed{ハ}}\pi$である。
(3)すべての正の整数nに対する$\triangle PA_nA_{n+1}$が互いに相似になる点Pに対応する
複素数は、$\boxed{ヒ}+\boxed{フ }\ i$である。
(4)$|z_n| \gt 1000$となる最小のnは$n=\boxed{へ}$である。
(5)$A_{2022+k}$が実軸上にある最小の正の整数kは$k=\boxed{ホ}$である。

2022上智大学理工学部過去問
単元: #大学入試過去問(数学)#複素数平面#相似な図形#数列#漸化式#複素数平面#図形への応用#学校別大学入試過去問解説(数学)#上智大学#数学(高校生)#数B#数C
指導講師: 福田次郎
問題文全文(内容文):
複素数からなる数列${z_n}$を、次の条件で定める。
$z_1=0,\ \ \ z_{n+1}=(1+i)z_n-i \ \ \ (i=1,2,3, \ \ ...)$
正の整数nに対し、z_nに対応する負素数平面上の点をA_nとおく。
(1)$z_2=\boxed{ツ }+\boxed{ツ }\ i, \ \ \ z_3=\boxed{ト}+$
$\boxed{ナ}\ i,\ \ \ z_4=\boxed{二}+\boxed{ヌ}\ i $である。
(2)$r \gt 0,\ 0 \leqq θ \lt 2\pi$ を用いて、$1+i=r(\cos θ+i\sin θ)$のように$1+i$を極形式で
表すとき、$r=\sqrt{\boxed{ネ}},\ θ=\frac{\boxed{ノ }}{\boxed{ハ}}\pi$である。
(3)すべての正の整数nに対する$\triangle PA_nA_{n+1}$が互いに相似になる点Pに対応する
複素数は、$\boxed{ヒ}+\boxed{フ }\ i$である。
(4)$|z_n| \gt 1000$となる最小のnは$n=\boxed{へ}$である。
(5)$A_{2022+k}$が実軸上にある最小の正の整数kは$k=\boxed{ホ}$である。

2022上智大学理工学部過去問
投稿日:2022.10.19

<関連動画>

福田のおもしろ数学484〜漸化式で定まる数列の連続する正の項の最大個数

アイキャッチ画像
単元: #数列#漸化式#数学(高校生)#数B
指導講師: 福田次郎
問題文全文(内容文):

実数列$a_1,a_2,a_3,\cdots $が

$a_n=a_{n-1}-a_{n+2} (n=1,2,3,4\cdots)$

を満たしている。

この数列の連続する要素のうちで、

すべてが正となるものの最大個数はいくつか?
    
この動画を見る 

山形大 漸化式 高校数学 Japanese university entrance exam questions

アイキャッチ画像
単元: #数列#漸化式#数学(高校生)#数B
指導講師: 鈴木貫太郎
問題文全文(内容文):
山形大学過去問題
$a_1 = -1$ $\quad$ $n=1,2,3\cdots$
$2\displaystyle \sum_{k=1}^{n}a_k=3a_{n+1}-2a_n-1$
一般項$a_n$を求めよ。
この動画を見る 

【数B】数列:漸化式の基本を解説シリーズその5 分数型

アイキャッチ画像
単元: #数列#漸化式#数学(高校生)
指導講師: 理数個別チャンネル
問題文全文(内容文):
$a_1=1,a_{n+1}=\dfrac{a_{n}}{3a_n+2}$で定められる数列{$a_n$}の一般項を求めよ。
この動画を見る 

【高校数学】 数B-72 和の記号Σ(シグマ)①

アイキャッチ画像
単元: #数列#数列とその和(等差・等比・階差・Σ)#数学(高校生)#数B
指導講師: とある男が授業をしてみた
問題文全文(内容文):
$\displaystyle \sum_{k=1}^n k=①$

$\displaystyle \sum_{k=1}^n k^2=②$

$\displaystyle \sum_{k=1}^n k^3=③$

$\displaystyle \sum_{k=1}^n C=④\quad \left(\displaystyle \sum_{k=1}^n 3=⑤\right)$

$\displaystyle \sum_{k=1}^n r^k=⑥\quad (r\neq 1)$

$\displaystyle \sum_{k=1}^n r^{k-1}=⑦\quad (r\neq 1)$

次の和を項を書き並べて表そう.

⑧$\displaystyle \sum_{k=1}^5 2^k$

⑨$\displaystyle \sum_{k=3}^{n-1} k^2$


この動画を見る 

等差数列の一般項 山形大

アイキャッチ画像
単元: #大学入試過去問(数学)#数列#数列とその和(等差・等比・階差・Σ)#学校別大学入試過去問解説(数学)#数学(高校生)#山形大学#数B
指導講師: 鈴木貫太郎
問題文全文(内容文):
2013年 山形大学 過去問

公差が0でない等差数列{$a_n$}
$a_5^2+a_6^2=a_7^2+a_8^2$
$\displaystyle \sum_{n=1}^{13} a_n=13$
一般項$a_n$を求めよ。
この動画を見る 
PAGE TOP