福田のおもしろ数学411〜漸化式で定まる数列の2020項までの和と2030項までの和から2025項までの和を求める - 質問解決D.B.(データベース)

福田のおもしろ数学411〜漸化式で定まる数列の2020項までの和と2030項までの和から2025項までの和を求める

問題文全文(内容文):

数列$\{a_n\}$は$a_n=a_{n-1}-a_{n-2} (n\geqq 3)$を

満たしている。

$\displaystyle \sum_{n=1}^{2020}=2030$ $\quad $ $\displaystyle \sum_{n=1}^{2030}=2020$

を満たすとき

$\displaystyle \sum_{n=1}^{2025} a_n$の値を求めよ。
    
単元: #数列#漸化式#数学(高校生)#数B
指導講師: 福田次郎
問題文全文(内容文):

数列$\{a_n\}$は$a_n=a_{n-1}-a_{n-2} (n\geqq 3)$を

満たしている。

$\displaystyle \sum_{n=1}^{2020}=2030$ $\quad $ $\displaystyle \sum_{n=1}^{2030}=2020$

を満たすとき

$\displaystyle \sum_{n=1}^{2025} a_n$の値を求めよ。
    
投稿日:2025.02.16

<関連動画>

福田の数学〜立教大学2023年理学部第1問(3)〜線分上の格子点の個数

アイキャッチ画像
単元: #大学入試過去問(数学)#数列#漸化式#学校別大学入試過去問解説(数学)#立教大学#数学(高校生)#数B
指導講師: 福田次郎
問題文全文(内容文):
$\Large\boxed{1}$ (3)座標平面上の2点O(0, 0)とP(2023, 1071)について、線分OA上にある点(x, y)でx, yが共に整数であるものの個数は$\boxed{\ \ ウ\ \ }$である。
ただし、線分OPは両端点を含むものとする。

2023立教大学理学部過去問
この動画を見る 

【高校数学】等差数列×等比数列の和~どこよりも丁寧に分かりやすく~ 3-12【数学B】

アイキャッチ画像
単元: #数列#数列とその和(等差・等比・階差・Σ)#数学(高校生)
指導講師: 【楽しい授業動画】あきとんとん
問題文全文(内容文):
等差×等比

$S=1・1+2・2++3・2²+…n・2^{n-1}$

を求めよ
この動画を見る 

福田の数学〜早稲田大学2024年理工学部第2問〜重複順列と連立漸化式

アイキャッチ画像
単元: #数列#漸化式#数学(高校生)#数B
指導講師: 福田次郎
問題文全文(内容文):
$\Large\boxed{2}$ $n$を自然数とし、数1, 2, 4を重複を許して$n$個並べてできる$n$桁の自然数全体を考える。そのうちで3の倍数となるものの個数を$a_n$、3で割ると1余るものの個数を$b_n$、3で割ると2余るものの個数を$c_n$とする。
(1)$a_{n+1}$を$b_n$, $c_n$を用いて表せ。同様に$b_{n+1}$を$a_n$, $c_n$を用いて、$c_{n+1}$を$a_n$, $b_n$を用いて表せ。
(2)$a_{n+2}$を$n$と$c_n$を用いて表せ。
(3)$a_{n+6}$を$n$と$a_n$を用いて表せ。
(4)$a_{6m+1} (m=0,1,2,...)$を$m$を用いて表せ。
この動画を見る 

漸化式 関西医科大

アイキャッチ画像
単元: #大学入試過去問(数学)#数列#漸化式#学校別大学入試過去問解説(数学)#数学(高校生)#数B#関西医科大学
指導講師: 鈴木貫太郎
問題文全文(内容文):
2021関西医科大学過去問題
$a_1=\frac{1}{13}$ n=1,2,・・・自然数
$5a_{n+1}=10a_n-a_{n+1}・a_n$
一般項$a_n$を求めよ
この動画を見る 

【数学B/数列】等比数列の和

アイキャッチ画像
単元: #数列#数列とその和(等差・等比・階差・Σ)#数学(高校生)#数B
指導講師: 【ゼロから理解できる】高校数学・物理
問題文全文(内容文):
次の問いに答えよ。
(1)
初項が$3$、公比が$2$の等比数列の初項から第$n$項までの和を求めよ。

(2)
初項が$1$、公比が$2$、末項が$64$である等比数列の和を求めよ。
この動画を見る 
PAGE TOP