【中学数学】2次方程式:解から係数を決定! xについての2次方程式x²-(p+1)x-p²-3=0の1つの解が6のとき、pの値をすべて求めよ。 - 質問解決D.B.(データベース)

【中学数学】2次方程式:解から係数を決定! xについての2次方程式x²-(p+1)x-p²-3=0の1つの解が6のとき、pの値をすべて求めよ。

問題文全文(内容文):
xについての2次方程式$x^2-(p+1)x-p^2-3=0$の1つの解が6のとき、pの値をすべて求めよ。
単元: #数学(中学生)#中3数学#2次方程式
指導講師: 理数個別チャンネル
問題文全文(内容文):
xについての2次方程式$x^2-(p+1)x-p^2-3=0$の1つの解が6のとき、pの値をすべて求めよ。
投稿日:2020.09.25

<関連動画>

【数学】二次方程式の活用:みんなが嫌いな動く点Pを得意に!

アイキャッチ画像
単元: #数学(中学生)#中3数学#2次方程式
教材: #KEYワーク#KEYワーク(数学)中2#中高教材
指導講師: 理数個別チャンネル
問題文全文(内容文):
みんなの苦手な動点Pの問題を克服しよう!
この動画を見る 

【高校受験対策】数学-死守28

アイキャッチ画像
単元: #数学(中学生)#中2数学#中3数学#式の計算(単項式・多項式・式の四則計算)#連立方程式#式の計算(展開、因数分解)#平方根#2次方程式#確率#2次関数#相似な図形
指導講師: とある男が授業をしてみた
問題文全文(内容文):
①$(- 4) + 3\times (- 3)$を計算しなさい。

②$\dfrac{2x - 1}{3} - \dfrac{3x + 1}{5}$を計算しなさい。

③$(\sqrt{12} + \sqrt{18})(\sqrt3 - \sqrt2)$を計算しなさい。

④$(x - 4)^ 2 + 2(x - 2) - 3$を因数分解しなさい。

⑤方程式$(x + 3)(x - 5) = 5x - 24$を解きなさい。

⑥次の連立方程式を解きなさい。
$\begin{eqnarray}
\left\{
\begin{array}{l}
4x+5=3y-2 \\
3x+2y=16
\end{array}
\right.
\end{eqnarray}$

⑦関数$y=-3x^2$について、
$x$の値が1から3まで増加するときの変化の割合を求めなさい。

⑧1つのさいころを2回投げるとき、1回目に出た目の数が、
2回目に出た目の数の倍数となる確率を求めなさい。

⑨男子20人、好16人のクラスでテストを行ったところ、 男子の平均点が$x$点で、
女子の平均点が$y$点であった。このクラスのテストの合計点は何点か、
$y$を使った式で表しなさい。

⑩三角柱と三角すいがあり、底面は相似な三角形で高さが等しい。
三角柱の底面と三角すいの底面の相似比が$1:2$であるとき、
三角柱の体積は三角すいの体積の何倍か、求めなさい。
この動画を見る 

平面図形 成田高校

アイキャッチ画像
単元: #中3数学#相似な図形#三平方の定理
指導講師: 数学を数楽に
問題文全文(内容文):
$x= ?$
この動画を見る 

【高校受験対策】数学-関数18

アイキャッチ画像
単元: #数学(中学生)#中2数学#中3数学#1次関数#2次関数
指導講師: とある男が授業をしてみた
問題文全文(内容文):
右の図1のように,$AB = 8cm,\angle ABC=90°,\angle BCD = 90°$の
四角形$ABCD$がある.
点$P$は頂点$A$を出発し,
一定の速さで辺$AB,BC,CD$上を通って,頂点$D$まで移動する.
点$P$が頂点$A$を出発してから$x$秒後の3点$A,P,D$を結んでできる
$△APD$の面積を$ycm^2$とする.
右の図2は, $x$と$y$の関係をグラフに表したものである.
このとき,次の各問いに答えなさい.
ただし,点$P$が頂点$A,D$にあるときは$y=0$とする.

①点$P$が移動する速さは毎秒何$cm$か答えなさい.

②図1の辺$BC$と辺$CD$の長さをそれぞれ求めなさい.

③図2のグラフ中の$a$の値と$b$の値を,それぞれ求めなさい.

④点$P$が辺$BC$上にあるとき,
$△ABP$と$△APD$の面積が等しくなるのは,
点$P$が頂点$A$を出発してから何秒後か求めなさい.

図は動画内参照
この動画を見る 

【高校受験対策】数学-関数43

アイキャッチ画像
単元: #数学(中学生)#中3数学#2次関数
指導講師: とある男が授業をしてみた
問題文全文(内容文):
高校受験対策・関数43

Q.
右の図において、曲線アは関数$y=\frac{1}{2}x^2$のグラフである。
曲線ア上の点で$x$座標が$4$である点を$A$、$y$軸上の点で$y$座標が$10,6$である点をそれぞれ$B,C$とし、線分$OB$の中点を$D$とする。
また、線分$OA$上に点$E$をとる。ただし$O$は原点とする。

①2点$A,D$を通る直線の式を求めなさい。

②$△OAB$の面積を求めなさい。

③四角形$ABCE$の面積が$△OAB$の面積の$\frac{1}{2}$であるとき、 点$E$の座標を求めなさい。
この動画を見る 
PAGE TOP