2024共通テスト数学 あけましておめでとう - 質問解決D.B.(データベース)

2024共通テスト数学 あけましておめでとう

問題文全文(内容文):
自然数lを3進数と4進数で表したら下3桁が共に012になった
最小のlを求めよ
単元: #大学入試過去問(数学)#センター試験・共通テスト関連#共通テスト#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
自然数lを3進数と4進数で表したら下3桁が共に012になった
最小のlを求めよ
投稿日:2024.01.14

<関連動画>

【数学IA】コレだけやれば50点はとれます【最短で50点突破】(共通テスト)

アイキャッチ画像
単元: #数Ⅰ#数A#大学入試過去問(数学)#センター試験・共通テスト関連#共通テスト#数学(高校生)
指導講師: カサニマロ【べんとう・ふきのとうの授業動画】
問題文全文(内容文):
【数学IA】点数獲得のための勉強法紹介動画です
この動画を見る 

共通テスト数学1A_第1問を簡単に解く方法教えます

アイキャッチ画像
単元: #数Ⅰ#数A#大学入試過去問(数学)#センター試験・共通テスト関連#共通テスト#数学(高校生)
指導講師: カサニマロ【べんとう・ふきのとうの授業動画】
問題文全文(内容文):
[1]cを正の整数とする。xの2次方程式
  2x2+(4c3)x+2c2c11=0 について考える。

(1)c=1のとき、①の左辺を因数分解すると
  ([]x+[])(x[])
  であるから、①の解は
  x=[][],[]である。

(2)c=2のとき、①の解は
  x=[]±[][]
  であり、大きい方の解をaとすると
  5a=[]+[][]
  である。また、m<5a<m+1を満たす整数は[シ]である。

(3)太郎さんと花子さんは、①の解について考察している。
-----------------
太郎:①の解はcの値によって、ともに有理数である場合もあれば、
   ともに無理数である場合もあるね。
   cがどのような値のときに、解は有理数になるのかな。

花子:2次方程式の解の公式の根号の中に着目すればいいんじゃないかな。
-----------------
①の解が異なる二つの有理数であるような正の整数cの個数は[ス]個である。
この動画を見る 

共通テストまで、あと90日。受験生がやるべきこと3選。

アイキャッチ画像
単元: #大学入試過去問(数学)#物理#化学#生物#センター試験・共通テスト関連#共通テスト#大学入試過去問(物理)#大学入試過去問(化学)#英語(高校生)#国語(高校生)#社会(高校生)#日本史#世界史#大学入試過去問(英語)#大学入試過去問(国語)#共通テスト#共通テスト(現代文)#その他#大学入試過去問(生物)#共通テスト・センター試験#共通テスト(古文)#共通テスト#勉強法#大学入試過去問・共通テスト・模試関連#大学入試過去問・共通テスト・模試関連#数学(高校生)#理科(高校生)#共通テスト
指導講師: 篠原好【京大模試全国一位の勉強法】
問題文全文(内容文):
共通テストまで、あと90日。受験生がやるべきこと3選。
この動画を見る 

共通テスト2021年数学詳しい解説〜共通テスト2021年2B第5問〜ベクトル

アイキャッチ画像
単元: #大学入試過去問(数学)#平面上のベクトル#空間ベクトル#平面上のベクトルと内積#ベクトルと平面図形、ベクトル方程式#空間ベクトル#センター試験・共通テスト関連#共通テスト#数学(高校生)#数C
指導講師: 福田次郎
問題文全文(内容文):
5
1辺の長さが1の正五角形の対角線の長さをaとする。
(1)1辺の長さが1の正五角形OA1B1C1A2を考える。

A1C1B1=    °C1A1A2=    °となることから、A1A2
B1C1は平行である。ゆえに
A1A2=    B1C1
であるから
B1C1=1    A1A2=1    (OA2OA1)
また、OA1A2B1は平行で、さらに、OA2A1C1も平行であることから
B1C1=B1A2+A2O+OA1+A1C1=    OA1OA2+OA1+    OA2=(        )(OA2OA1)
となる。したがって
1    =        
が成り立つ。a>0に注意してこれを解くと、a=1+52を得る。


(2)下の図(※動画参照)のような、1辺の長さが1の正十二面体を考える。正十二面体とは、
どの面もすべて合同な正五角形であり、どの頂点にも三つの面が集まっている
へこみのない多面体のことである。

OA1B1C1A2に着目する。OA1A2B1が平行であることから
OB1=OA2+A2B1=OA2+    OA1
である。また
|OA2OA1|2=|A1A2|2=    +        
に注意すると
OA1OA2=            
を得る。

次に、面OA_2B_2C_2A_2に着目すると
OB2=OA3+    OA2
である。さらに
OA2OA3=OA3OA1=            
が成り立つことがわかる。ゆえに
OA1OB2=    , OB1OB2=    
である。

    ,     の解答群(同じものを繰り返し選んでもよい。)
0
1
1
1+52
152
1+52
152
12
1+54
154


最後に、面A2C1DEB2に着目する。
B2D=    A2C1=OB1
であることに注意すると、4点O,B1,D,B2は同一平面上にあり、四角形
OB1DB2    ことがわかる。

    の解答群
⓪正方形である
①正方形ではないが、長方形である
②正方形ではないが、ひし形である
③長方形でもひし形でもないが、平行四辺形である
④平行四辺形ではないが、台形である
⑤台形でない

(ただし、少なくとも1組の対辺が平行な四角形を台形という)

2021共通テスト過去問
この動画を見る 

福田の共通テスト直前演習〜2021年共通テスト数学ⅡB問題3。確率分布、統計の問題。

アイキャッチ画像
単元: #大学入試過去問(数学)#確率分布と統計的な推測#確率分布#統計的な推測#センター試験・共通テスト関連#共通テスト#数学(高校生)#数B
指導講師: 福田次郎
問題文全文(内容文):
(1)A地区で保護されるジャガイモには1個の重さが200gを超えるものが
25%含まれることが経験的にわかっている。花子さんはA地区で収穫された
ジャガイモから400個を無作為に抽出し、重さを計測した。そのうち、重さが
200gを超えるジャガイモの個数を表す確率変数をZとする。このときZは
二項分布B(400,0,    )に従うから、Zの平均(期待値)は    である。

(2)Zを(1)の確率変数とし、A地区で収穫されたジャガイモ400個からなる標本において
重さが200gを超えていたジャガイモの標本における比率を
R=Z400とする。このとき、Rの標準偏差はσ(R)=    である。
標本の大きさ400は十分に大きいので、Rは近似的に正規分布
N(0,    ,(    )2)に従う。
したがって、P(Rx)=0.0465となるようなxの値は    となる。
ただし、    の計算においては3=1.73とする。

    の解答群
36400  ①34  ②380  ③340 

    については、最も適当なものを、次の⓪~③のうちから一つ選べ。
⓪0.209   ①0.251   ②0.286   ③0.395

(3)B地区で収穫され、出荷される予定のジャガイモ1個の重さは100gから
300gの間に分布している。B地区で収穫され、出荷される予定のジャガイモ
1個の重さを表す確率変数をXとするとき、Xは連続型確率変数であり、X
の取り得る値xの範囲は100x300である。
花子さんは、B地区で収穫され、出荷される予定の全てのジャガイモのうち、
重さが200g以上のものの割合を見積もりたいと考えた。そのために花子さんは
Xの確率密度関数f(x)として適当な関数を定め、それを用いて割合を
見積もるという方針を立てた。
B地区で収穫され、出荷される予定のジャガイモから206個を無作為に抽出
したところ、重さの標本平均は180gであった。
図1(※動画参照)はこの標本のヒストグラムである。

花子さんは図1のヒストグラムにおいて、重さxの増加とともに度数がほぼ
一定の割合で減少している傾向に着目し、Xの確率密度関数f(x)として、1次関数
f(x)=ax+b (100x300)
を考えることにした。ただし、100x300の範囲でf(x)0とする。
このとき、P(100X300)=    であることから

    104a+    102b=     
である。
花子さんは、Xの平均(期待値)が重さの標本平均180gと等しくなるように
確率密度関数を定める方法を用いることにした。
連続型確率変数Xの取り得る値xの範囲が100x300で、その
確率密度関数がf(x)のとき、Xの平均(期待値)mは
m=100300xf(x)dx
で定義される。この定義と花子さんの採用した方法から
m=263105a+4104b=180 
となる。①と②により、確率密度関数は
f(x)=     105x+    103 
と得られる。このようにして得られた③のf(x)は、100x300の範囲で
f(x)0を満たしており、確かに確率密度関数として適当である。
したがって、この花子さんお方針に基づくと、B地区で収穫され、出荷される
予定の全てのジャガイモのうち、重さが200g以上のものは    
あると見積もることができる。

    については、最も適当なものを、次の⓪~③のうちから一つ選べ。
⓪33 ①34 ②35 ③36

2022共通テスト数学過去問
この動画を見る 
PAGE TOP preload imagepreload image