福田の数学〜空間図形の通過範囲の面積と体積〜杏林大学2023年医学部第3問後編〜空間図形の通過範囲の面積と体積 - 質問解決D.B.(データベース)

福田の数学〜空間図形の通過範囲の面積と体積〜杏林大学2023年医学部第3問後編〜空間図形の通過範囲の面積と体積

問題文全文(内容文):
$xy$平面上の単位円$C$の$x\geqq 0$に動点$P$が$A$から$B$へ移動するとき、
$P,Q$を通り頂点$T$の放物線$L$と線分$PQ$で囲まれた図形の
通過範囲の体積を求めよ。
ただし$TM=PQ$とする。
単元: #大学入試過去問(数学)#積分とその応用#面積・体積・長さ・速度#学校別大学入試過去問解説(数学)#数学(高校生)#杏林大学#数Ⅲ
指導講師: 福田次郎
問題文全文(内容文):
$xy$平面上の単位円$C$の$x\geqq 0$に動点$P$が$A$から$B$へ移動するとき、
$P,Q$を通り頂点$T$の放物線$L$と線分$PQ$で囲まれた図形の
通過範囲の体積を求めよ。
ただし$TM=PQ$とする。
投稿日:2023.12.28

<関連動画>

【高校数学】毎日積分21日目【難易度:★★★】【毎日17時投稿】

アイキャッチ画像
単元: #積分とその応用#定積分#数学(高校生)#数Ⅲ
指導講師: 理数個別チャンネル
問題文全文(内容文):
$\int_0^{\frac{π}{4}}\frac{dx}{sin^2x+3cos^2x}$
これを解け.
この動画を見る 

福田の数学〜名古屋大学2022年理系第4問〜定積分の極限と方程式の解

アイキャッチ画像
単元: #大学入試過去問(数学)#関数と極限#積分とその応用#関数の極限#定積分#学校別大学入試過去問解説(数学)#数学(高校生)#名古屋大学#数Ⅲ
指導講師: 福田次郎
問題文全文(内容文):
\begin{eqnarray}
{\Large\boxed{4}}\ 関数f(x)は区間x \geqq 0において連続な増加関数でf(0)=1を満たすとする。\\
ただしf(x)が区間x \geqq 0における増加関数であるとは、区間内の任意の実数x_1,x_2に対し\\
x_1 \lt x_2ならばf(x_1) \lt f(x_2)が成り立つ時をいう。以下、nは正の整数とする。\\
(1)\lim_{n \to \infty}\int_0^{2-\frac{1}{n}}\frac{f(x)}{2-x}dx=\infty を示せ。\\
\\
(2)区間y \gt 2 において関数F_n(y)をF_n(y)=\int_{2+\frac{1}{n}}^y\frac{f(x)}{2-x}dxと定めるとき、\\
\\
\lim_{y \to \infty}F_n(y)=\inftyを示せ。また2+\frac{1}{n}より大きい実数a_nで\\
\\
\int_0^{2-\frac{1}{n}}\frac{f(x)}{2-x}dx+\int_{{2+\frac{1}{n}}}^{a_n}\frac{f(x)}{2-x}dx=0\\
\\
を満たすものがただ1つ存在することを示せ。\\
(3)(2)のa_nについて、不等式a_n \lt 4がすべてのnに対して成り立つことを示せ。
\end{eqnarray}

2022名古屋大学理系過去問
この動画を見る 

【高校数学】毎日積分51日目 実践編②回転体シリーズ~場合分け~【難易度:★★★】【毎日17時投稿】

アイキャッチ画像
単元: #積分とその応用#定積分#数学(高校生)#数Ⅲ
指導講師: 理数個別チャンネル
問題文全文(内容文):
座標空間において,連立不等式
$x^2+y^2\leqq 1$
$|x|\leqq \sin z $
$|y|\leqq \sin z $
$0\leqq z \leqq \dfrac{\pi}{2}$
で定められる立体を$K$とする。
(1)$t$を$0\leqq t \leqq \dfrac{\pi}{2}$を満たす定数として、立体$K$を$z$軸に垂直な平面$z=t$で切ったときの断面積を$S(t)$とする。必要に応じて場合分けをして、$S(t)$を$t$の式で表せ。
(2)立体$K$のうち、2つの平面$z=0$と$z=\dfrac{\pi}{4}$ではさまれた部分の体積$V$を求めよ。
(3) 立体$K$の体積$W$を求めよ。
この動画を見る 

#高専数学_5#不定積分#元高専教員

アイキャッチ画像
単元: #数Ⅱ#微分法と積分法#積分とその応用#不定積分#不定積分・定積分#数学(高校生)#数Ⅲ
指導講師: ますただ
問題文全文(内容文):
下記の不定積分を解け。
$\displaystyle \int x log (x+1)$ $dx$
この動画を見る 

積分による面積計算の公式①【6分の1公式】#shorts

アイキャッチ画像
単元: #積分とその応用#不定積分#定積分#数学(高校生)#数Ⅲ
指導講師: 理数個別チャンネル
問題文全文(内容文):
積分による面積計算の公式①に関して解説していきます.
この動画を見る 
PAGE TOP