福田の数学〜空間図形の通過範囲の面積と体積〜杏林大学2023年医学部第3問後編〜空間図形の通過範囲の面積と体積 - 質問解決D.B.(データベース)

福田の数学〜空間図形の通過範囲の面積と体積〜杏林大学2023年医学部第3問後編〜空間図形の通過範囲の面積と体積

問題文全文(内容文):
$xy$平面上の単位円$C$の$x\geqq 0$に動点$P$が$A$から$B$へ移動するとき、
$P,Q$を通り頂点$T$の放物線$L$と線分$PQ$で囲まれた図形の
通過範囲の体積を求めよ。
ただし$TM=PQ$とする。
単元: #大学入試過去問(数学)#積分とその応用#面積・体積・長さ・速度#学校別大学入試過去問解説(数学)#数学(高校生)#杏林大学#数Ⅲ
指導講師: 福田次郎
問題文全文(内容文):
$xy$平面上の単位円$C$の$x\geqq 0$に動点$P$が$A$から$B$へ移動するとき、
$P,Q$を通り頂点$T$の放物線$L$と線分$PQ$で囲まれた図形の
通過範囲の体積を求めよ。
ただし$TM=PQ$とする。
投稿日:2023.12.28

<関連動画>

【高校数学】毎日積分65日目~47都道府県制覇への道~【⑨高知(高知大学)】【毎日17時投稿】

アイキャッチ画像
単元: #大学入試過去問(数学)#積分とその応用#定積分#学校別大学入試過去問解説(数学)#数学(高校生)#高知大学#数Ⅲ
指導講師: 理数個別チャンネル
問題文全文(内容文):
(1)すべての実数$x$に対して
$sin3x=3sinx-4sin^3x$
$cos3x=-3cosx+4cos^3x$
が成り立つことを、加法定理と2倍角の公式を用いて示せ。
(2)実数$θ$を、$\displaystyle\frac{π}{3}<θ<\frac{π}{2}$と$cos3θ=\displaystyle-\frac{11}{16}$を同時に満たすものとする。このとき、$cosθ$を求めよ。
(3)(2)の$θ$に対して、定積分$\displaystyle\int_0^θsin^5xdx$を求めよ。
【高知大学 2023】
この動画を見る 

【高校数学】毎日積分74日目~47都道府県制覇への道~【九州~四国・中国地方総集編】【毎日17時投稿】

アイキャッチ画像
単元: #積分とその応用#定積分#数学(高校生)#数Ⅲ
指導講師: 理数個別チャンネル
問題文全文(内容文):
九州~四国・中国地方総集編
テーマ別に並べています!
この動画を見る 

福田の数学〜慶應義塾大学2021年理工学部第4問〜はさみうちの原理と区分求積

アイキャッチ画像
単元: #大学入試過去問(数学)#微分とその応用#積分とその応用#微分法#学校別大学入試過去問解説(数学)#慶應義塾大学#数学(高校生)#数Ⅲ
指導講師: 福田次郎
問題文全文(内容文):
\begin{eqnarray}
{\Large\boxed{4}}\hspace{240pt}\\
(1)aは0 \lt a \leqq \frac{1}{2}を満たす定数とする。x \geqq 0の範囲で不等式\\
a\left(x-\frac{x^2}{4}\right) \leqq \log(1+ax) が成り立つことを示しなさい。\\
\\
(2)bを実数の定数とする。x \geqq 0の範囲で不等式\\
\log\left(1+\frac{1}{2}x\right) \leqq bx\\
が成り立つようなbの最小値は\boxed{\ \ タ\ \ }である。\\
\\
(3)nとkを自然数とし、I(n,k)=\lim_{t \to +0}\int_0^{\frac{k}{n}}\frac{\log\left(1+\displaystyle\frac{1}{2}tx\right)}{t(1+x)}dx\\
とおく。I(n,k)を求めると、I(n,k)=\boxed{\ \ チ\ \ }である。また\\
\lim_{n \to \infty}\frac{1}{n}\sum_{k=1}^nI(n,k)=\boxed{\ \ ツ\ \ } である。
\end{eqnarray}
この動画を見る 

【高校数学】毎日積分13日目【難易度:★★】【毎日17時投稿】

アイキャッチ画像
単元: #積分とその応用#定積分#数学(高校生)#数Ⅲ
指導講師: 理数個別チャンネル
問題文全文(内容文):
$\int_0^1log\frac{x+2}{x+1}dx$
この動画を見る 

福田の数学〜明治大学2021年全学部統一入試Ⅲ第3問(2)〜面積と回転体の体積

アイキャッチ画像
単元: #微分とその応用#積分とその応用#接線と法線・平均値の定理#面積・体積・長さ・速度#大学入試解答速報#数学#明治大学#数Ⅲ
指導講師: 福田次郎
問題文全文(内容文):
\begin{eqnarray}
{\Large\boxed{3}} (2)\ 曲線y=\log xをCとする。t \gt eとして、C上の点P(t,\ \log t)におけるCの\\
接線lとx軸との交点をQ、y軸との交点をRとおく。また、(0,\ \log t)で表される\\
点をSとおく。点Qのx座標は\ \boxed{\ \ ウ\ \ }\ であり、点Rのy座標は\ \boxed{\ \ エ\ \ }\ である。\\
座標平面の原点をOとすると、a \gt 0のとき、線分ORと線分RSの長さの比が\\
a:1となるのは、t=\boxed{\ \ オ\ \ }のときである。したがって、三角形OQRの面積が\\
三角形SPRの面積の9倍となるのは、t=\boxed{\ \ カ\ \ }のときである。\\
曲線Cとx軸、および直線x=\boxed{\ \ カ\ \ }で囲まれた図形をy軸のまわりに一回転\\
させてできる回転体の体積は\boxed{\ \ キ\ \ }\ \piとなる。\\
\\
\boxed{\ \ ウ\ \ }\ 、\boxed{\ \ エ\ \ }\ の解答群\\
⓪1-\log t  ①1-2\log t  ②\log t-1  ③2\log t-1  ④t(1-\log t)\\
⑤t(1-\log t)  ⑥t(\log t-1)  ⑦t(2\log t-1)  ⑧2t(1-\log t)  ⑨2t(\log t-1)\\
\\
\boxed{\ \ オ\ \ }\ の解答群\\
⓪1-\log t  ①1-2\log t  ②\log t-1  ③2\log t-1  ④t(1-\log t)\\
⑤t(1-2\log t)  ⑥t(\log t-1)  ⑦t(2\log t-1)  ⑧2t(1-\log t)  ⑨2t(\log t-1)\\
\\
\boxed{\ \ カ\ \ }\ 、\boxed{\ \ キ\ \ }\ の解答群\\
⓪\ e^4  ①\ e^8  ②\ \frac{e^4-1}{2}  ③\ \frac{e^8-1}{2}  ④\ \frac{5e^4-1}{2}  \\
⑤\ \frac{9e^8-1}{2}  ⑥\ \frac{3e^4+1}{2}  ⑦\ \frac{7e^8+1}{2}  ⑧4e^8-e^4+1  ⑨3e^8+1
\end{eqnarray}
この動画を見る 
PAGE TOP