問題文全文(内容文):
$△ABC$において,次の等式が成り立つとき,この三角形の最も大きい角の大きさを求めよ。
$\sin A:\sin B:\sin C=7:5:3$
$△ABC$において,次の等式が成り立つとき,この三角形の最も大きい角の大きさを求めよ。
$\sin A:\sin B:\sin C=7:5:3$
チャプター:
0:00 オープニング
0:06 問題確認
0:39 まずは正弦定理!
3:17 kを使って三辺の長さを表す!
4:40 最後に余弦定理を使う!
8:15 解き方の確認
8:45 エンディング
単元:
#数Ⅰ#図形と計量#三角比への応用(正弦・余弦・面積)#数学(高校生)
指導講師:
理数個別チャンネル
問題文全文(内容文):
$△ABC$において,次の等式が成り立つとき,この三角形の最も大きい角の大きさを求めよ。
$\sin A:\sin B:\sin C=7:5:3$
$△ABC$において,次の等式が成り立つとき,この三角形の最も大きい角の大きさを求めよ。
$\sin A:\sin B:\sin C=7:5:3$
投稿日:2023.10.31