問題文全文(内容文):
$m,n$を自然数とし,$0\lt a \lt 1$とする.
$\log_2 6=m+\dfrac{1}{n+a}$
(1)$m,n$を求めよ.
(2)$a\gt \dfrac{2}{3}$を示せ.
2006大阪大過去問
$m,n$を自然数とし,$0\lt a \lt 1$とする.
$\log_2 6=m+\dfrac{1}{n+a}$
(1)$m,n$を求めよ.
(2)$a\gt \dfrac{2}{3}$を示せ.
2006大阪大過去問
単元:
#数Ⅱ#指数関数と対数関数#対数関数#数学(高校生)
指導講師:
鈴木貫太郎
問題文全文(内容文):
$m,n$を自然数とし,$0\lt a \lt 1$とする.
$\log_2 6=m+\dfrac{1}{n+a}$
(1)$m,n$を求めよ.
(2)$a\gt \dfrac{2}{3}$を示せ.
2006大阪大過去問
$m,n$を自然数とし,$0\lt a \lt 1$とする.
$\log_2 6=m+\dfrac{1}{n+a}$
(1)$m,n$を求めよ.
(2)$a\gt \dfrac{2}{3}$を示せ.
2006大阪大過去問
投稿日:2020.12.20