【高校数学】三角関数の性質の考え方~θ+2nπ, -θ, θ+π, θ+π/2~ 4-3 【数学Ⅱ】 - 質問解決D.B.(データベース)

【高校数学】三角関数の性質の考え方~θ+2nπ, -θ, θ+π, θ+π/2~ 4-3 【数学Ⅱ】

問題文全文(内容文):
たくさんある三角比の公式
覚えないといけないと思っていませんか!?
暗記は不要です!!
チャプター:

00:00 はじまり
00:45 公式の証明
07:52 まとめ
08:32 まとめノート

単元: #数Ⅰ#図形と計量#三角比(三角比・拡張・相互関係・単位円)#数学(高校生)
指導講師: 【楽しい授業動画】あきとんとん
問題文全文(内容文):
たくさんある三角比の公式
覚えないといけないと思っていませんか!?
暗記は不要です!!
投稿日:2021.06.09

<関連動画>

福田の数学〜3乗根のおおよその値を知る方法〜早稲田大学2023年社会科学部第3問〜3乗根と2重根号を簡単にする

アイキャッチ画像
単元: #数Ⅰ#数Ⅱ#大学入試過去問(数学)#数と式#式と証明#実数と平方根(循環小数・有理数・無理数・絶対値・平方根計算・2重根号)#指数関数と対数関数#恒等式・等式・不等式の証明#指数関数#学校別大学入試過去問解説(数学)#早稲田大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
$a=\sqrt[3]{5\sqrt{2}+7}-\sqrt[3]{5\sqrt{2}-7}$とする。
(1)$a^3$を$a$の1次式で表せ。
(2)$a$は整数であることを示せ。
(3)$b=a=\sqrt[3]{5\sqrt{2}+7}+\sqrt[3]{5\sqrt{2}-7}$
を超えない最大の整数を求めよ。

2023早稲田大学社会科学部過去問
この動画を見る 

有名問題 ゴリ押しでもできるけど。。。(数I)

アイキャッチ画像
単元: #数Ⅰ#数と式#式の計算(整式・展開・因数分解)#数学(高校生)
指導講師: 数学を数楽に
問題文全文(内容文):
$(a+b+c)(a^2+b^2+c^2-ab-bc-ca)$
を展開せよ
この動画を見る 

地道に因数分解?一瞬で因数分解?

アイキャッチ画像
単元: #数Ⅰ#数と式#式の計算(整式・展開・因数分解)#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
次の式を因数分解せよ.
$(x-y)^3+(y-z)^3+(z-x)^3$
この動画を見る 

福田の数学〜慶應義塾大学2023年薬学部第3問〜データの分析と相関係数

アイキャッチ画像
単元: #数Ⅰ#大学入試過去問(数学)#データの分析#データの分析#学校別大学入試過去問解説(数学)#慶應義塾大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
$\Large\boxed{3}$ ある病院に入院中の患者20人について、ある検査値と、薬Xと薬Yの使用量との関係について調べた。その結果をまとめたものが以下の表であり、斜線は薬を使用していないことを示す。
(1)薬Xのみを使用している患者の検査値の平均値は$\boxed{\ \ ネ\ \ }$(mg/dL)、薬Yのみを使用している患者の検査値の平均値は$\boxed{\ \ ノ\ \ }$(mg/dL)である。
したがって、薬Xと薬Yのどちらも使用していない患者の検査値の平均と比べ、薬Xのみを使用している患者の検査値の平均値は$\boxed{\ \ ハ\ \ }$、薬Yのみを使用している患者の検査値の平均値は$\boxed{\ \ ヒ\ \ }$。
(2)薬Xと薬Yを併用している患者の検査値の第1四分位数は$\boxed{\ \ フ\ \ }$(mg/dL)、第3四分位数は$\boxed{\ \ ヘ\ \ }$(mg/dL)である。
(3)薬Xの使用量と検査値との相関係数は、薬Xのみを使用している場合は0.78であり、薬Xと薬Yを併用している場合は$\boxed{\ \ ホ\ \ }$である。
よって薬Xと薬Yを併用すると、薬Xの使用量と検査値の相関係数が$\boxed{\ \ マ\ \ }$と考えられる。
なお下線部の0.78は、小数第3位を四捨五入した値である。
ただし、$\sqrt 2$=1.41, $\sqrt 5$=2.23, $\sqrt{30}$=5.48, $\sqrt{101}$=10.05として計算しなさい。

2023慶應義塾大学薬学部過去問
この動画を見る 

【短時間でマスター!!】90°-θの三角比を解説!(sin,cos,tanの求め方)〔現役講師解説、数学〕

アイキャッチ画像
単元: #数Ⅰ#図形と計量#三角比(三角比・拡張・相互関係・単位円)#数学(高校生)
指導講師: 3rd School
問題文全文(内容文):
数学1A
$90^{ \circ } - \theta $の三角比
$45^{ \circ } $以下の三角比で表せ。
①$\sin 67^{ \circ }$
②$\cos 89^{ \circ }$
③$\tan 50^{ \circ }$
この動画を見る 
PAGE TOP