満点は激ムズ!?常用対数の難問です【お茶の水女子大学】【数学 入試問題】 - 質問解決D.B.(データベース)

満点は激ムズ!?常用対数の難問です【お茶の水女子大学】【数学 入試問題】

問題文全文(内容文):
以下の問いに答えよ。ただし、必要があれば、
$0.3010<\log_{10} 2<0.3011$
$0.4771<\log_{10} 3<0.4772$であることを用いてもよい。

(1)$3^{53}$の桁数を求めよ。

(2)$3^{53}$の最高位の数と1の位の数をそれぞれ求めよ。

(3)$|3^{53}-2^m|$が最小となる整数$m$を求めよ。

お茶の水女子大過去問
単元: #数Ⅱ#指数関数と対数関数#数学(高校生)
指導講師: 数学・算数の楽しさを思い出した / Ken
問題文全文(内容文):
以下の問いに答えよ。ただし、必要があれば、
$0.3010<\log_{10} 2<0.3011$
$0.4771<\log_{10} 3<0.4772$であることを用いてもよい。

(1)$3^{53}$の桁数を求めよ。

(2)$3^{53}$の最高位の数と1の位の数をそれぞれ求めよ。

(3)$|3^{53}-2^m|$が最小となる整数$m$を求めよ。

お茶の水女子大過去問
投稿日:2023.02.05

<関連動画>

福田の数学〜慶應義塾大学2024年経済学部第6問〜3次関数の増減と最大値と面積

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#微分法と積分法#接線と増減表・最大値・最小値#学校別大学入試過去問解説(数学)#面積、体積#慶應義塾大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
$\Large{\boxed{6}}$ $a$,$b$,$p$を実数とする。関数$f(x)$=$x^3$+$ax^2$+$bx$+17 は$x$=$p$で極大値、$x$=$-4p$で極小値をとり、$f(-2p)$=-17 を満たすとする。
(1)$a$,$b$,$p$の値、および$f(x)$の極大値$M$、極大値$m$を、それぞれ求めよ。
(2)(1)で求めた$a$,$b$および0≦$t$≦5 を満たす実数$t$に対して、区間0≦$x$≦$t$ における|$f(x)$|の最大値を$g(t)$とする。$t$の値について場合分けをして、それぞれの場合に$g(t)$を求めよ。
(3)(2)で求めた$g(t)$に対して、定積分$I$=$\displaystyle\int_0^5g(t)dt$ を求めよ。
この動画を見る 

福田の一夜漬け数学〜図形と方程式〜直線の方程式(6)点と直線の距離の公式・基本、高校2年生

アイキャッチ画像
単元: #数Ⅱ#図形と方程式#円と方程式#軌跡と領域#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
${\Large\boxed{1}}$ 点(1,5)と直線$4x-3y+1=0$ の距離を求めよ。

${\Large\boxed{2}}$ 平行な2直線$2x-y+1=$, $2x-y-3=0$ の距離を求めよ。

${\Large\boxed{3}}$ 原点中心、半径2の円と直線$mx-y-3m+2=0$ 
が異なる2点で交わるように$m$の値の範囲を求めよ。
この動画を見る 

解の公式の利用 A 2021専大松戸

アイキャッチ画像
単元: #数学(中学生)#数Ⅱ#複素数と方程式#解と判別式・解と係数の関係#高校入試過去問(数学)#数学(高校生)
指導講師: 数学を数楽に
問題文全文(内容文):
a>0とする2次方程式
$x^2-ax+4a=0$の解が
$x=\frac{a ± \sqrt{57} }{2}$となるとき
a=?(a>0)

2021専修大学松戸高等学校
この動画を見る 

【高校数学】 数Ⅱ-16 等式の証明①

アイキャッチ画像
単元: #数Ⅱ#式と証明#恒等式・等式・不等式の証明#数学(高校生)
指導講師: とある男が授業をしてみた
問題文全文(内容文):
①$(a+2b)^2+(a-2b)^2=2(a^2+4b^2)$を証明しよう。

②$a+b+c=0$のとき、$a^2+ab+b^2=-(ab+bc+ca)$が成り立つことを証明しよう。
この動画を見る 

福田の一夜漬け数学〜多変数関数1文字固定(3)〜受験編

アイキャッチ画像
単元: #数Ⅱ#図形と方程式#指数関数と対数関数#微分法と積分法#軌跡と領域#指数関数#平均変化率・極限・導関数#接線と増減表・最大値・最小値#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
三辺の長さがa,b,cである直方体を長さがbの一辺を回転軸として$90^{ \circ }$
回転させる。直方体が通過する点全体が作る体積をVとする。
(1)$V$を$a,b,c$で表せ。
(2)$a+b+c=1$のとき、$V$の取り得る値の範囲を求めよ。
この動画を見る 
PAGE TOP