高等学校入学試験予想問題:洛南高等学校~全部入試問題 - 質問解決D.B.(データベース)

高等学校入学試験予想問題:洛南高等学校~全部入試問題

問題文全文(内容文):
$ \boxed{1}$

(1)$ \left(4-\dfrac{7}{3}\right)\times \left(-\dfrac{3}{5}+\dfrac{1}{2}\right)$を計算せよ.
(2)$ \ell:y=(a+2)x+b-1$
$ m:y=bx-a^2 $について,
$ a=\sqrt2,b=1$のとき,$ \ell,m$の交点は?
(3)$ a=\sqrt5-\sqrt3,b=\sqrt5+\sqrt3 $のとき,$ a^2-ab-b^2$の値は?

$ \boxed{2}$

図のように,2点$ A,B $が$ y-ax^2 $のグラフ上にあり,$ A $の座標は$ (3,27)$,$B$のx座標は-2である.
3点$ C,D,E $は直線$ OA $上,$ \triangle OBC,\triangle BCF,\triangle CFD,\triangle FDG,
\triangle DGE,\triangle GEA $の面積はすべて等しい.
このとき,次の問いに答えよ.
(1)点$ B$のy座標を求めよ.
(2)点$ C $の座標を求めよ.
(3)直線$ EG $の傾きを求めよ.

$ \boxed{3}$

図のように,底面の半径が3cm,母線の長さが5cmの円錐の中に半径の等しい2つの球$ P,Q $があります.
2つの球$ P,Q $は互いに接し,円錐の底面と側面に接しているとき,次の問いに答えなさい.
ただし,2つの球の中心と,円錐の頂点と,円錐の底面の中心は同じ平面上にあるものとする.
(1)球$ P$の半径を求めよ.
(2)円錐の体積は,$ P $の体積の何倍か.
(3)球$ P $と円錐の側面が接する点を$ A $とする.
点$ A $を通り,円錐の底面に平行な平面で球$ P $を切断するとき,球$ P $の切断面の面積を求めよ.
単元: #数学(中学生)#中1数学#中2数学#中3数学#式の計算(単項式・多項式・式の四則計算)#式の計算(展開、因数分解)#平方根#空間図形#1次関数#2次関数#平面図形
指導講師: 高校入試から見た数学の世界「全部入試問題」by しろたん
問題文全文(内容文):
$ \boxed{1}$

(1)$ \left(4-\dfrac{7}{3}\right)\times \left(-\dfrac{3}{5}+\dfrac{1}{2}\right)$を計算せよ.
(2)$ \ell:y=(a+2)x+b-1$
$ m:y=bx-a^2 $について,
$ a=\sqrt2,b=1$のとき,$ \ell,m$の交点は?
(3)$ a=\sqrt5-\sqrt3,b=\sqrt5+\sqrt3 $のとき,$ a^2-ab-b^2$の値は?

$ \boxed{2}$

図のように,2点$ A,B $が$ y-ax^2 $のグラフ上にあり,$ A $の座標は$ (3,27)$,$B$のx座標は-2である.
3点$ C,D,E $は直線$ OA $上,$ \triangle OBC,\triangle BCF,\triangle CFD,\triangle FDG,
\triangle DGE,\triangle GEA $の面積はすべて等しい.
このとき,次の問いに答えよ.
(1)点$ B$のy座標を求めよ.
(2)点$ C $の座標を求めよ.
(3)直線$ EG $の傾きを求めよ.

$ \boxed{3}$

図のように,底面の半径が3cm,母線の長さが5cmの円錐の中に半径の等しい2つの球$ P,Q $があります.
2つの球$ P,Q $は互いに接し,円錐の底面と側面に接しているとき,次の問いに答えなさい.
ただし,2つの球の中心と,円錐の頂点と,円錐の底面の中心は同じ平面上にあるものとする.
(1)球$ P$の半径を求めよ.
(2)円錐の体積は,$ P $の体積の何倍か.
(3)球$ P $と円錐の側面が接する点を$ A $とする.
点$ A $を通り,円錐の底面に平行な平面で球$ P $を切断するとき,球$ P $の切断面の面積を求めよ.
投稿日:2023.02.04

<関連動画>

【1/5】中3冬特訓12日目【1/7終了】

アイキャッチ画像
単元: #数学(中学生)#中1数学#空間図形
指導講師: とある男が授業をしてみた
問題文全文(内容文):
Q.右の図のように、母線の長さOA=10cm、底面の直径AB=6cmの 円錐がある。

①円錐の体積を求めよ。

②円錐の表面積を求めよ。

③右の図のように、円錐の側面を平面上に置き、頂点を$o$中心として、すべらないように転がす。
このとき、円錐がもとの位置にもどるのは何回転したときか求めよ。
この動画を見る 

【受験対策】 数学-小問①

アイキャッチ画像
単元: #数学(中学生)#中2数学#中3数学#方程式#式の計算(単項式・多項式・式の四則計算)#式の計算(展開、因数分解)
指導講師: とある男が授業をしてみた
問題文全文(内容文):
◎次の計算をしよう。

①$-5-8 \times \displaystyle \frac{1}{4}$

②$-3+5 \times (-1)^3$

③$4(2x-y)-3(x+y)$

④$\displaystyle \frac{1}{2}(3a-2b)-(2a-b)$

⑤一次方程式$x-7=9(x+1)$を解こう。

⑥等式$2a-3b=1$を$b$について解こう。

⑦等式$a=\displaystyle \frac{b+c}{2}$をcについて解こう。
この動画を見る 

4つの正方形

アイキャッチ画像
単元: #数学(中学生)#中1数学#平面図形
指導講師: 数学を数楽に
問題文全文(内容文):
四つの正方形
四角形Aと四角形Bの面積の和=?
*図は動画内参照
この動画を見る 

福田のおもしろ数学016〜ジュニア数学オリンピック予選問題〜正三角形の面積

アイキャッチ画像
単元: #算数(中学受験)#数学(中学生)#中1数学#中2数学#数学検定・数学甲子園・数学オリンピック等#平面図形#角度と面積#平面図形#三角形と四角形#数学オリンピック
指導講師: 福田次郎
問題文全文(内容文):
正三角形 ABC を図のように、 3 辺に平行な線分を 1 本ずっ引いて分割した。書かれている数は分割してできた正三角形の面積を表している。このとき、正三角形の面積を求めよ。
※図は動画内参照

ジュニア数学オリンピック過去問
この動画を見る 

【理解度が試される…!】有理数:大阪府~全国入試問題解法

単元: #数学(中学生)#中1数学#中2数学#式の計算(単項式・多項式・式の四則計算)#文字と式#高校入試過去問(数学)#大阪府高等学校
指導講師: 高校入試から見た数学の世界「全部入試問題」by しろたん
問題文全文(内容文):
$x\;$を有理数とする。$\displaystyle\frac{35}{12}x\;$と$\displaystyle\frac{21}{20}x\;$の値がともに自然数となる最も小さい$x\;$の値を求めなさい。
この動画を見る 
PAGE TOP