高等学校入学試験予想問題:洛南高等学校~全部入試問題 - 質問解決D.B.(データベース)

高等学校入学試験予想問題:洛南高等学校~全部入試問題

問題文全文(内容文):
$ \boxed{1}$

(1)$ \left(4-\dfrac{7}{3}\right)\times \left(-\dfrac{3}{5}+\dfrac{1}{2}\right)$を計算せよ.
(2)$ \ell:y=(a+2)x+b-1$
$ m:y=bx-a^2 $について,
$ a=\sqrt2,b=1$のとき,$ \ell,m$の交点は?
(3)$ a=\sqrt5-\sqrt3,b=\sqrt5+\sqrt3 $のとき,$ a^2-ab-b^2$の値は?

$ \boxed{2}$

図のように,2点$ A,B $が$ y-ax^2 $のグラフ上にあり,$ A $の座標は$ (3,27)$,$B$のx座標は-2である.
3点$ C,D,E $は直線$ OA $上,$ \triangle OBC,\triangle BCF,\triangle CFD,\triangle FDG,
\triangle DGE,\triangle GEA $の面積はすべて等しい.
このとき,次の問いに答えよ.
(1)点$ B$のy座標を求めよ.
(2)点$ C $の座標を求めよ.
(3)直線$ EG $の傾きを求めよ.

$ \boxed{3}$

図のように,底面の半径が3cm,母線の長さが5cmの円錐の中に半径の等しい2つの球$ P,Q $があります.
2つの球$ P,Q $は互いに接し,円錐の底面と側面に接しているとき,次の問いに答えなさい.
ただし,2つの球の中心と,円錐の頂点と,円錐の底面の中心は同じ平面上にあるものとする.
(1)球$ P$の半径を求めよ.
(2)円錐の体積は,$ P $の体積の何倍か.
(3)球$ P $と円錐の側面が接する点を$ A $とする.
点$ A $を通り,円錐の底面に平行な平面で球$ P $を切断するとき,球$ P $の切断面の面積を求めよ.
単元: #数学(中学生)#中1数学#中2数学#中3数学#式の計算(単項式・多項式・式の四則計算)#式の計算(展開、因数分解)#平方根#空間図形#1次関数#2次関数#平面図形
指導講師: 高校入試から見た数学の世界「全部入試問題」by しろたん
問題文全文(内容文):
$ \boxed{1}$

(1)$ \left(4-\dfrac{7}{3}\right)\times \left(-\dfrac{3}{5}+\dfrac{1}{2}\right)$を計算せよ.
(2)$ \ell:y=(a+2)x+b-1$
$ m:y=bx-a^2 $について,
$ a=\sqrt2,b=1$のとき,$ \ell,m$の交点は?
(3)$ a=\sqrt5-\sqrt3,b=\sqrt5+\sqrt3 $のとき,$ a^2-ab-b^2$の値は?

$ \boxed{2}$

図のように,2点$ A,B $が$ y-ax^2 $のグラフ上にあり,$ A $の座標は$ (3,27)$,$B$のx座標は-2である.
3点$ C,D,E $は直線$ OA $上,$ \triangle OBC,\triangle BCF,\triangle CFD,\triangle FDG,
\triangle DGE,\triangle GEA $の面積はすべて等しい.
このとき,次の問いに答えよ.
(1)点$ B$のy座標を求めよ.
(2)点$ C $の座標を求めよ.
(3)直線$ EG $の傾きを求めよ.

$ \boxed{3}$

図のように,底面の半径が3cm,母線の長さが5cmの円錐の中に半径の等しい2つの球$ P,Q $があります.
2つの球$ P,Q $は互いに接し,円錐の底面と側面に接しているとき,次の問いに答えなさい.
ただし,2つの球の中心と,円錐の頂点と,円錐の底面の中心は同じ平面上にあるものとする.
(1)球$ P$の半径を求めよ.
(2)円錐の体積は,$ P $の体積の何倍か.
(3)球$ P $と円錐の側面が接する点を$ A $とする.
点$ A $を通り,円錐の底面に平行な平面で球$ P $を切断するとき,球$ P $の切断面の面積を求めよ.
投稿日:2023.02.04

<関連動画>

中1数学「分数の文字式の計算」【毎日配信】

アイキャッチ画像
単元: #数学(中学生)#中1数学#文字と式
指導講師: 中学受験算数・高校受験数学けいたくチャンネル
問題文全文(内容文):
分数の文字式の計算に関して解説していきます。
この動画を見る 

球の表面積ってなんで4πr^2?

アイキャッチ画像
単元: #数学(中学生)#中1数学#空間図形
指導講師: 【楽しい授業動画】あきとんとん
問題文全文(内容文):
球の表面積が$4 \pi r ^ 2$になるのはなぜか、理由解説動画です
この動画を見る 

【3分で不等式が好きになる!】不等式:法政大学第二高等学校~全国入試問題解法

アイキャッチ画像
単元: #数学(中学生)#中1数学#中3数学#方程式#平方根#高校入試過去問(数学)#法政大学第二高等学校
指導講師: 高校入試から見た数学の世界「全部入試問題」by しろたん
問題文全文(内容文):
入試問題 法政大学第二高等学校

【不等式】
$\displaystyle \frac{1}{\sqrt{ n+1 }} \gt \displaystyle \frac{1}{7}$
を満たす正の整数$n$のうち
最も大きいものを答えなさい。
この動画を見る 

2023高校入試数学解説88問目 直方体と内接球 埼玉県学校選択問題(改)

アイキャッチ画像
単元: #数学(中学生)#中1数学#空間図形#高校入試過去問(数学)
指導講師: 数学を数楽に
問題文全文(内容文):
△IPQと球は接している
球の半径=2
x=?
*図は動画内参照

2023埼玉県(改)ラスボス
この動画を見る 

【思考力を高める5分間!一度は解きたい!】図形:日本大学習志野高等学校~全国入試問題解法

アイキャッチ画像
単元: #数学(中学生)#中1数学#中2数学#相似な図形#平面図形#高校入試過去問(数学)#日本大学習志野高等学校
指導講師: 高校入試から見た数学の世界「全部入試問題」by しろたん
問題文全文(内容文):
入試問題 日本大学習志野高等学校

6個の正方形を 並べてできた 長方形において、
$\angle x+ \angle y=$▬度である。
四角部分の角度を求めよ。

※図は動画内参照
この動画を見る 
PAGE TOP