高等学校入学試験予想問題:洛南高等学校~全部入試問題 - 質問解決D.B.(データベース)

高等学校入学試験予想問題:洛南高等学校~全部入試問題

問題文全文(内容文):
$ \boxed{1}$

(1)$ \left(4-\dfrac{7}{3}\right)\times \left(-\dfrac{3}{5}+\dfrac{1}{2}\right)$を計算せよ.
(2)$ \ell:y=(a+2)x+b-1$
$ m:y=bx-a^2 $について,
$ a=\sqrt2,b=1$のとき,$ \ell,m$の交点は?
(3)$ a=\sqrt5-\sqrt3,b=\sqrt5+\sqrt3 $のとき,$ a^2-ab-b^2$の値は?

$ \boxed{2}$

図のように,2点$ A,B $が$ y-ax^2 $のグラフ上にあり,$ A $の座標は$ (3,27)$,$B$のx座標は-2である.
3点$ C,D,E $は直線$ OA $上,$ \triangle OBC,\triangle BCF,\triangle CFD,\triangle FDG,
\triangle DGE,\triangle GEA $の面積はすべて等しい.
このとき,次の問いに答えよ.
(1)点$ B$のy座標を求めよ.
(2)点$ C $の座標を求めよ.
(3)直線$ EG $の傾きを求めよ.

$ \boxed{3}$

図のように,底面の半径が3cm,母線の長さが5cmの円錐の中に半径の等しい2つの球$ P,Q $があります.
2つの球$ P,Q $は互いに接し,円錐の底面と側面に接しているとき,次の問いに答えなさい.
ただし,2つの球の中心と,円錐の頂点と,円錐の底面の中心は同じ平面上にあるものとする.
(1)球$ P$の半径を求めよ.
(2)円錐の体積は,$ P $の体積の何倍か.
(3)球$ P $と円錐の側面が接する点を$ A $とする.
点$ A $を通り,円錐の底面に平行な平面で球$ P $を切断するとき,球$ P $の切断面の面積を求めよ.
単元: #数学(中学生)#中1数学#中2数学#中3数学#式の計算(単項式・多項式・式の四則計算)#式の計算(展開、因数分解)#平方根#空間図形#1次関数#2次関数#平面図形
指導講師: 高校入試から見た数学の世界「全部入試問題」by しろたん
問題文全文(内容文):
$ \boxed{1}$

(1)$ \left(4-\dfrac{7}{3}\right)\times \left(-\dfrac{3}{5}+\dfrac{1}{2}\right)$を計算せよ.
(2)$ \ell:y=(a+2)x+b-1$
$ m:y=bx-a^2 $について,
$ a=\sqrt2,b=1$のとき,$ \ell,m$の交点は?
(3)$ a=\sqrt5-\sqrt3,b=\sqrt5+\sqrt3 $のとき,$ a^2-ab-b^2$の値は?

$ \boxed{2}$

図のように,2点$ A,B $が$ y-ax^2 $のグラフ上にあり,$ A $の座標は$ (3,27)$,$B$のx座標は-2である.
3点$ C,D,E $は直線$ OA $上,$ \triangle OBC,\triangle BCF,\triangle CFD,\triangle FDG,
\triangle DGE,\triangle GEA $の面積はすべて等しい.
このとき,次の問いに答えよ.
(1)点$ B$のy座標を求めよ.
(2)点$ C $の座標を求めよ.
(3)直線$ EG $の傾きを求めよ.

$ \boxed{3}$

図のように,底面の半径が3cm,母線の長さが5cmの円錐の中に半径の等しい2つの球$ P,Q $があります.
2つの球$ P,Q $は互いに接し,円錐の底面と側面に接しているとき,次の問いに答えなさい.
ただし,2つの球の中心と,円錐の頂点と,円錐の底面の中心は同じ平面上にあるものとする.
(1)球$ P$の半径を求めよ.
(2)円錐の体積は,$ P $の体積の何倍か.
(3)球$ P $と円錐の側面が接する点を$ A $とする.
点$ A $を通り,円錐の底面に平行な平面で球$ P $を切断するとき,球$ P $の切断面の面積を求めよ.
投稿日:2023.02.04

<関連動画>

2通りで解説 内角が等しい六角形 筑波附属

アイキャッチ画像
単元: #数学(中学生)#中1数学#平面図形#高校入試過去問(数学)
指導講師: 数学を数楽に
問題文全文(内容文):
内角の大きさが全て等しい六角形
周の長さが51
EF=?
*図は動画内参照

筑波大学附属高等学校
この動画を見る 

正四角錐の表面積... 

アイキャッチ画像
単元: #数学(中学生)#中1数学#空間図形
指導講師: 【楽しい授業動画】あきとんとん
問題文全文(内容文):
正四角形の表面積の裏技紹介動画です
この動画を見る 

【中学数学】正負の数:~とある中1のテスト問題~「2×3⁹+3⁸+6×3⁷は3の何乗ですか」生徒「なにこれ!?(涙目)」

単元: #数学(中学生)#中1数学#正の数・負の数
指導講師: 理数個別チャンネル
問題文全文(内容文):
$2\times3^9+3^8+6\times3^7$は3の何乗ですか
この動画を見る 

【高校受験対策/数学】死守73

アイキャッチ画像
単元: #数学(中学生)#中1数学#中2数学#中3数学#正の数・負の数#式の計算(単項式・多項式・式の四則計算)#連立方程式#式の計算(展開、因数分解)#平方根#2次方程式#確率#文字と式#平面図形
指導講師: とある男が授業をしてみた
問題文全文(内容文):
高校受験対策・死守73

①$-9+(-8)$を計算しなさい。

②$\frac{3}{4}÷-(\frac{5}{6})$を計算しなさい。

③$2(a+46)-(-3a+7b) を計算しなさい。

④$\sqrt{12}×\sqrt{2}÷\sqrt{6}$を計算しなさい。

⑤二次方程式$3x^2-x-1=0$を解きなさい。

⑥連立方程式を解きなさい。
$2x+3y=20$
$4y=x+1$

⑦2つのさいころを同時に投げるとき、出る目の和が8に ならない確率を求めなさい。
ただし、どの目が出ることも同様に確からしいとする。

⑧右の図のように、線分$OA$、$OB$がある。
$\angle AOB$の二等分線上にあり、2点$O,B$から等しい距離にある点$P$を、コンパスと定規を使って作図しなさい。

この動画を見る 

【中学数学】中学数学:数学検定3級2次:問題3・4

アイキャッチ画像
単元: #数学(中学生)#中1数学#中2数学#数学検定・数学甲子園・数学オリンピック等#比例・反比例#確率#数学検定#数学検定3級
指導講師: 理数個別チャンネル
問題文全文(内容文):
問題3.下の①~⑥の式で表される関数のグラフについて、次の問いに答えなさい。
  ① y = 3x   ② y = -3x  ③ y = 1/3 x
  ④ y = -1/3 x ⑤ y = 3/x  ⑥ y = -3/x

(5) グラフが点(-1,3)を通る関数を、①~⑥の中からすべて選びなさい。
(6) グラフが双曲線である関数を、①~⑥の中からすべて選びなさい。

問題4.箱の中に、赤球が3個、白球が2個、黒球が1個入っています。この箱の中から球を取り出すとき、次の問いに答えなさい。
(7) 球を1個取り出すとき、取り出した球が白球である確率を求めなさい。
(8) 同時に2個の球を取り出すとき、取り出した球が2個とも赤球である確率を求めなさい。
(9) 同時に2個の球を取り出すとき、取り出した球が異なる色である確率を求めなさい。
この動画を見る 
PAGE TOP