高等学校入学試験予想問題:洛南高等学校~全部入試問題 - 質問解決D.B.(データベース)

高等学校入学試験予想問題:洛南高等学校~全部入試問題

問題文全文(内容文):
$ \boxed{1}$

(1)$ \left(4-\dfrac{7}{3}\right)\times \left(-\dfrac{3}{5}+\dfrac{1}{2}\right)$を計算せよ.
(2)$ \ell:y=(a+2)x+b-1$
$ m:y=bx-a^2 $について,
$ a=\sqrt2,b=1$のとき,$ \ell,m$の交点は?
(3)$ a=\sqrt5-\sqrt3,b=\sqrt5+\sqrt3 $のとき,$ a^2-ab-b^2$の値は?

$ \boxed{2}$

図のように,2点$ A,B $が$ y-ax^2 $のグラフ上にあり,$ A $の座標は$ (3,27)$,$B$のx座標は-2である.
3点$ C,D,E $は直線$ OA $上,$ \triangle OBC,\triangle BCF,\triangle CFD,\triangle FDG,
\triangle DGE,\triangle GEA $の面積はすべて等しい.
このとき,次の問いに答えよ.
(1)点$ B$のy座標を求めよ.
(2)点$ C $の座標を求めよ.
(3)直線$ EG $の傾きを求めよ.

$ \boxed{3}$

図のように,底面の半径が3cm,母線の長さが5cmの円錐の中に半径の等しい2つの球$ P,Q $があります.
2つの球$ P,Q $は互いに接し,円錐の底面と側面に接しているとき,次の問いに答えなさい.
ただし,2つの球の中心と,円錐の頂点と,円錐の底面の中心は同じ平面上にあるものとする.
(1)球$ P$の半径を求めよ.
(2)円錐の体積は,$ P $の体積の何倍か.
(3)球$ P $と円錐の側面が接する点を$ A $とする.
点$ A $を通り,円錐の底面に平行な平面で球$ P $を切断するとき,球$ P $の切断面の面積を求めよ.
単元: #数学(中学生)#中1数学#中2数学#中3数学#式の計算(単項式・多項式・式の四則計算)#式の計算(展開、因数分解)#平方根#空間図形#1次関数#2次関数#平面図形
指導講師: 高校入試から見た数学の世界「全部入試問題」by しろたん
問題文全文(内容文):
$ \boxed{1}$

(1)$ \left(4-\dfrac{7}{3}\right)\times \left(-\dfrac{3}{5}+\dfrac{1}{2}\right)$を計算せよ.
(2)$ \ell:y=(a+2)x+b-1$
$ m:y=bx-a^2 $について,
$ a=\sqrt2,b=1$のとき,$ \ell,m$の交点は?
(3)$ a=\sqrt5-\sqrt3,b=\sqrt5+\sqrt3 $のとき,$ a^2-ab-b^2$の値は?

$ \boxed{2}$

図のように,2点$ A,B $が$ y-ax^2 $のグラフ上にあり,$ A $の座標は$ (3,27)$,$B$のx座標は-2である.
3点$ C,D,E $は直線$ OA $上,$ \triangle OBC,\triangle BCF,\triangle CFD,\triangle FDG,
\triangle DGE,\triangle GEA $の面積はすべて等しい.
このとき,次の問いに答えよ.
(1)点$ B$のy座標を求めよ.
(2)点$ C $の座標を求めよ.
(3)直線$ EG $の傾きを求めよ.

$ \boxed{3}$

図のように,底面の半径が3cm,母線の長さが5cmの円錐の中に半径の等しい2つの球$ P,Q $があります.
2つの球$ P,Q $は互いに接し,円錐の底面と側面に接しているとき,次の問いに答えなさい.
ただし,2つの球の中心と,円錐の頂点と,円錐の底面の中心は同じ平面上にあるものとする.
(1)球$ P$の半径を求めよ.
(2)円錐の体積は,$ P $の体積の何倍か.
(3)球$ P $と円錐の側面が接する点を$ A $とする.
点$ A $を通り,円錐の底面に平行な平面で球$ P $を切断するとき,球$ P $の切断面の面積を求めよ.
投稿日:2023.02.04

<関連動画>

【中1 数学】中1-88 近似値

アイキャッチ画像
単元: #数学(中学生)#中1数学#資料の活用
指導講師: とある男が授業をしてみた
問題文全文(内容文):
①~⑪を求めよ。
◎有効数字と有効数字のけた数は?
①$5,2 \times 10^3$
②$7,25 \times 10^4$
③$1,90 \times 10^3$

◎次の測定値を有効数字$3$けたで表すと?
④$2843m$
⑤$34570g$
⑥$82951730km$

◎次の測定値は何の位まで測定したもの
⑦$9,24 \times 10^2g$
⑧$1,40 \times 10^3m$

◎真の値$125,6㎡$を$124,8㎡$と測定しました。
⑨このときの誤差は?

◎ある数の$a$を()の位で四捨五入して近似値をだしました。
$a$の範囲を不等号を使って書こう!!
⑩$329$(小数第$1$位)
⑪$5、6$(小数第$2$位)
この動画を見る 

比例のグラフ 反比例のグラフ

アイキャッチ画像
単元: #数学(中学生)#中1数学#比例・反比例
指導講師: 数学を数楽に
問題文全文(内容文):
○か✖か?
反比例のグラフと比例のグラフは常に2点で交わる
この動画を見る 

【困難は分割せよ!】図形:名古屋女子大学高等学校~全国入試問題解法

アイキャッチ画像
単元: #数学(中学生)#中1数学#中3数学#円#平面図形#高校入試過去問(数学)
指導講師: 高校入試から見た数学の世界「全部入試問題」by しろたん
問題文全文(内容文):
図の斜線部の面積は何$cm^2$か,求めなさい.

名古屋女子大学高等学校過去問
この動画を見る 

【高校受験対策/数学】死守66

アイキャッチ画像
単元: #数学(中学生)#中1数学#中2数学#中3数学#方程式#式の計算(単項式・多項式・式の四則計算)#式の計算(展開、因数分解)#平方根#2次方程式#空間図形#文字と式
指導講師: とある男が授業をしてみた
問題文全文(内容文):
高校受験対策・死守66

①$6x\times2xy\div3y$を計算しなさい。

②$\sqrt{18}-6\sqrt{2}$を計算しなさい。

③$x^2+4x-12$を因数分解しなさい。

④2次方程式$3x^2-5x+1=0$を解きなさい。

⑤方程式$5x+3=2x+6$を解きなさい。

⑥$\frac{1}{2}(3x-y)-\frac{4x-y}{3}$を計算しなさい。

⑦2次方程式$2(x-2)^2-3(x-2)+1=0$を解きなさい。

⑧$x=2+\sqrt{3}$、$y=2-\sqrt{3}$のとき、$(1+\frac{1}{x})(1+\frac{1}{y})$の値を求めなさい。

⑨右の図のような、底面の半径が3cm、高さが4cmの円錐があります。この円錐の表面積を求めなさい。ただし円周率は$\pi$とします。

➉右の図のように、円Oとこの円の外部の点Pがあります。
点Pを通る円の接線をコンパスと定規を使って1つ作図しなさい。
ただし、作するためにかいた線は消さないでおきなさい。
この動画を見る 

【高校受験対策/数学】死守83

アイキャッチ画像
単元: #数学(中学生)#正の数・負の数#式の計算(単項式・多項式・式の四則計算)#平方根#2次方程式#比例・反比例#空間図形#文字と式#平面図形
指導講師: とある男が授業をしてみた
問題文全文(内容文):
高校受験対策・死守83

①$-1-5$を計算しなさい。

②$(-3)^2+4×(-2)$を計算しなさい。

③$10xy^2÷ (-5y)×3x$を計算しなさい。

④$2x-y-\frac{5x+y}{3}$を計算しなさい。

⑤$(\sqrt{5}+3)(\sqrt{5}-2)$を計算しなさい。

⑥次の方程式を解きなさい。
$x^2=9x$

⑦$l=2\pi r$を$r$について解きなさい。

⑧正$n$角形の1つの内角が$140°$であるとき、$n$の値を求めなさい。

⑨$y$は$x$に比例し、$x=-3$のとき、$y=18$である。
$x=\frac{1}{2}$のときの$y$の値を求めなさい。

➉空間内の平面について述べた文として適切でないものを、次のア~エの中から1つ選びその記号を書きなさい。

ア 一直線上にある3点をふくむ平面は1つに決まる。
イ 交わる2直線をふくむ平面は1つに決まる。
ウ 平行な2直線をふくむ平面は1つに決まる。
エ 1つの直線とその直線上にない1点をふくむ平面は1つに決まる。
この動画を見る 
PAGE TOP