愛媛大 解けないタイプの漸化式 - 質問解決D.B.(データベース)

愛媛大 解けないタイプの漸化式

問題文全文(内容文):
2023愛媛大学過去問題
$a_{1}=2$
$a_{n+1}=a_{n}^2+2(n=1,2,3,\cdots)$
mが自然数なら$a_{2m}$は6の倍数であることを示せ
単元: #数列#愛媛大学
指導講師: 鈴木貫太郎
問題文全文(内容文):
2023愛媛大学過去問題
$a_{1}=2$
$a_{n+1}=a_{n}^2+2(n=1,2,3,\cdots)$
mが自然数なら$a_{2m}$は6の倍数であることを示せ
投稿日:2023.09.18

<関連動画>

日本獣医生命科学大 例のあれ

アイキャッチ画像
単元: #数列
指導講師: 鈴木貫太郎
問題文全文(内容文):
2022日本獣医生命科学大学過去問題
n自然数
$S_n = \frac{3}{a_1}+\frac{5}{a_2}+\frac{7}{a_3}+\cdots+\frac{2n+1}{a_n}$
$a_n = 1^2+2^2+3^2+\cdots+n^2$
$S_n$を求めよ
この動画を見る 

一橋大 確率

アイキャッチ画像
単元: #数A#大学入試過去問(数学)#場合の数と確率#確率#数列#漸化式#学校別大学入試過去問解説(数学)#一橋大学#数学(高校生)#数B
指導講師: 鈴木貫太郎
問題文全文(内容文):
サイコロを$n$回投げ、$k$回目の目を$a_k$。
$S_n=\displaystyle \sum_{k=1}^n 10^{n-k}a_k$

次の確率を求めよ。
$S_n$が
(1)4の倍数
(2)6の倍数
(3)7の倍数

出典:2013年一橋大学 過去問
この動画を見る 

【短時間でマスター!!】階差数列の求め方を解説!〔現役講師解説、数学〕

アイキャッチ画像
単元: #数列#数列とその和(等差・等比・階差・Σ)#数学(高校生)#数B
指導講師: 3rd School
問題文全文(内容文):
数学2B
階差数列
$5,11,23,41,65,95,\cdots$の一般項は?
この動画を見る 

福田の一夜漬け数学〜数列・漸化式(3)〜高校2年生

アイキャッチ画像
単元: #数列#数列とその和(等差・等比・階差・Σ)#漸化式#数学(高校生)#数B
指導講師: 福田次郎
問題文全文(内容文):
次の漸化式を解け。(すべて、$a_1=1$とする)

①$(n+1)a_{n+1}=na_n+2$

②$na_{n+1}=(n+1)a_n+2$

③$(n+2)a_{n+1}=na_n+2$

④$na_{n+1}=(n+2)a_n+2$
この動画を見る 

確率 漸化式

アイキャッチ画像
単元: #数列#漸化式#数学(高校生)#数B
指導講師: 鈴木貫太郎
問題文全文(内容文):
サイコロを$n$回振って,出た目の積を5で割った余りが1である確率$p_n$を求めよ.
この動画を見る 
PAGE TOP