【高校受験対策/数学/難解死守3】 - 質問解決D.B.(データベース)

【高校受験対策/数学/難解死守3】

問題文全文(内容文):
高校受験対策・難解死守3

①方程式$\frac{2x-3}{4}=\frac{x+2}{3}$を解け。

➁$\frac{x-6}{8}-0.75=\frac{1}{2}x$を解け

③$a^2-2b^2-ab+bc+ca$を因数分解せよ。

④$\sqrt{n^2+55}$が自然数となるような自然数$n$の値をすべて求めよ。


右の図のような台形$ABCD$があり、点$E$は辺$AB$の中点である。
また、線分$ED$上に点$F$を$EF:FD=2:5$となるようにとる。
このとき、$△ECF$の面積は台形$ABCD$の面積の何倍になるか求めよ。


3桁の正の整数$N$がある。
$N$を100で割った余りは百の位の数を12倍した数に1加えた数に等しい。
また、$N$の一の位の数を十の位に、$N$の十の位の数を百の位に、
$N$の百の位の数を一の位にそれぞれ置きかえてできる数はもとの整数$N$より63大きい。
このとき正の整数$N$を求めよ。
単元: #数学(中学生)#高校入試過去問(数学)
指導講師: とある男が授業をしてみた
問題文全文(内容文):
高校受験対策・難解死守3

①方程式$\frac{2x-3}{4}=\frac{x+2}{3}$を解け。

➁$\frac{x-6}{8}-0.75=\frac{1}{2}x$を解け

③$a^2-2b^2-ab+bc+ca$を因数分解せよ。

④$\sqrt{n^2+55}$が自然数となるような自然数$n$の値をすべて求めよ。


右の図のような台形$ABCD$があり、点$E$は辺$AB$の中点である。
また、線分$ED$上に点$F$を$EF:FD=2:5$となるようにとる。
このとき、$△ECF$の面積は台形$ABCD$の面積の何倍になるか求めよ。


3桁の正の整数$N$がある。
$N$を100で割った余りは百の位の数を12倍した数に1加えた数に等しい。
また、$N$の一の位の数を十の位に、$N$の十の位の数を百の位に、
$N$の百の位の数を一の位にそれぞれ置きかえてできる数はもとの整数$N$より63大きい。
このとき正の整数$N$を求めよ。
投稿日:2020.01.21

<関連動画>

【経験することが何よりも大切!】整数:和歌山県公立高等学校~全国入試問題解法

アイキャッチ画像
単元: #数学(中学生)#整数の性質#約数・倍数・整数の割り算と余り・合同式#高校入試過去問(数学)
指導講師: 高校入試から見た数学の世界「全部入試問題」by しろたん
問題文全文(内容文):
$ \sqrt{\dfrac{20}{n}}$の値が自然数となるような自然数$n$をすべて求めなさい.

和歌山県高校過去問

この動画を見る 

角度が等しい作図 2021 日比谷 B

アイキャッチ画像
単元: #数学(中学生)#数A#図形の性質#三角形の辺の比(内分・外分・二等分線)#高校入試過去問(数学)#数学(高校生)
指導講師: 数学を数楽に
問題文全文(内容文):
$\angle APB = \angle CPQ$となる辺AC上の点Qを作図によって求めよ。
*図は動画内参照

2021日比谷高等学校
この動画を見る 

【図形の奥義⁈実は追加の問題も大切!】図形:岐阜県立高等学校~全国入試問題解法

アイキャッチ画像
単元: #数学(中学生)#高校入試過去問(数学)#岐阜県公立高等学校
指導講師: 高校入試から見た数学の世界「全部入試問題」by しろたん
問題文全文(内容文):
全国入試問題~岐阜県立高等学校
AE = ADであることを証明 しなさい。

△ABC は正三角形
点E:線分BD上の点
BE = CDは等しい

※図は動画内参照
この動画を見る 

高等学校入学試験予想問題:中央大学附属高等学校~全国入試問題解法

アイキャッチ画像
単元: #数学(中学生)#中央大学附属高等学校
指導講師: 高校入試から見た数学の世界「全部入試問題」by しろたん
問題文全文(内容文):
次の各問いに答えよ.
$\boxed{1}$(1)
$ \dfrac{(2x^3z^4)^2}{5x^2y^3}\div \left(\dfrac{x^2z^3}{y}\right)\times \left(-\dfrac{10}{xy^2}\right)$
これを計算せよ.

(2)
$ (x+2)(3x+4)=5x^2+6x+7 $
これを解きなさい.

$\boxed{2}$
図のように,放物線$ y=x^2 $上に点$ A(-1,1)$がある.
$ OA=OP$となるように$ y $軸の正の部分に点$ P $をとる.
また,直線$ AP $と放物線$ y=x^2 $の点$ A $でない交点を$ B $とする.
このとき,次の問いに答えなさい.
(1)点$ P $の座標を求めなさい.

(2)点$ B $の座標を求めなさい.

(3)点$ B $を通って,直線$ OA $に平行な直線と$ y $軸との交点を$ C $とする.
$ \triangle OAP $の面積を$ S $とするとき,
$ \triangle ABC $の面積を$ S $を用いて表しなさい.

$ \boxed{3}$
$ k $番目が$ k $である数の列$ {1,2,3,・・・・・・}$の1番目から
$ n $番目までのすべての数の列の和を
$ \displaystyle \sum_{k=1}^{n}k $で表す.
式で表すと,$ \displaystyle \sum_{k=1}^{n}k=1+2+3+・・・+n$となる.
同様に,$ k $番目が$ k^2 $である数の列$ {1^2,2^2,3^2,・・・・・・}$の
1番目から$ n $番目までのすべての数の列の和を式で表すと,
$ \displaystyle \sum_{k=1}^{n}k^2=1^2+2^2+3^2+・・・+n^2 $となる.
$ \displaystyle \sum_{k=1}^{5}k^3 $を式で表しなさい.

中央大学附属高等学校予想問題
この動画を見る 

慶應義塾高校 円

アイキャッチ画像
単元: #数学(中学生)#数A#図形の性質#周角と円に内接する四角形・円と接線・接弦定理#高校入試過去問(数学)#数学(高校生)
指導講師: 数学を数楽に
問題文全文(内容文):
円の半径=1
正方形ABCDの1辺=?
斜線部の面積=?
*図は動画内参照

慶應義塾高等学校
この動画を見る 
PAGE TOP