【短時間でマスター!!】複素数の計算を解説!〔現役講師解説、数学〕 - 質問解決D.B.(データベース)

【短時間でマスター!!】複素数の計算を解説!〔現役講師解説、数学〕

問題文全文(内容文):
数学2B
①$(3-2i)+(2+5i)$
②$(3-2i)-(2+5i)$
③$(3-2i)(2+5i)$
$a+bi$の形にせよ。
①$\frac{1+3i}{3+i}$
②$\frac{1+2i}{3i}$
単元: #複素数平面#複素数平面#数学(高校生)#数C
指導講師: 3rd School
問題文全文(内容文):
数学2B
①$(3-2i)+(2+5i)$
②$(3-2i)-(2+5i)$
③$(3-2i)(2+5i)$
$a+bi$の形にせよ。
①$\frac{1+3i}{3+i}$
②$\frac{1+2i}{3i}$
投稿日:2023.06.06

<関連動画>

山口大 1の十乗根の問題

アイキャッチ画像
単元: #大学入試過去問(数学)#複素数平面#複素数平面#学校別大学入試過去問解説(数学)#数学(高校生)#山口大学#数C
指導講師: 鈴木貫太郎
問題文全文(内容文):
$
\begin{eqnarray}
&&2023山口大\\
&&2Z^4+(1-\sqrt{5})Z^2+2=0\\
&&①Z^{10}=1 を示せ\\
&&②Z+Z^3+Z^5+Z^7+Z^9の値\\
&&③\cos\frac{\pi}{5}\cos\frac{2\pi}{5} = \frac{1}{4}を示せ

\end{eqnarray}
$
この動画を見る 

福田の数学〜東京慈恵会医科大学2022年医学部第4問〜複素数平面と図形

アイキャッチ画像
単元: #数A#数Ⅱ#大学入試過去問(数学)#図形の性質#平面上の曲線#複素数平面#方べきの定理と2つの円の関係#図形と方程式#点と直線#2次曲線#複素数平面#図形への応用#学校別大学入試過去問解説(数学)#数学(高校生)#数C
指導講師: 福田次郎
問題文全文(内容文):
\begin{eqnarray}
{\Large\boxed{4}}\ 複素数平面上の点zが原点を中心とする半径1の円周上を動くとき、w=z+\frac{2}{z}\\
で表される点wの描く図形をCとする。Cで囲まれた部分の内部(ただし、\\
境界線は含まない)に定点\alphaをとり、\alphaを通る直線lがCと交わる2点を\beta_1,\beta_2とする。\\
このとき、次の問いに答えよ。ただしiは虚数単位とする。\\
(1)w=u+vi(u,vは実数)とするとき、uとvの間に成り立つ関係式を求めよ。\\
(2)点\alphaを固定したままlを動かすとき、積|\beta_1-\alpha|・|\beta_2-\alpha|が最大となる\\
ようなlはどのような直線のときか調べよ。
\end{eqnarray}
この動画を見る 

福田の数学〜浜松医科大学2023医学部年第3問〜複素数平の絶対値と偏角Part2

アイキャッチ画像
単元: #大学入試過去問(数学)#複素数平面#複素数平面#学校別大学入試過去問解説(数学)#浜松医科大学#数学(高校生)#数C
指導講師: 福田次郎
問題文全文(内容文):


Sを実部、虚部ともに整数であるような0以外の複素数全体の集合、Tを偏角 が0以上$\displaystyle \frac{π}{2}$未満であるようなSの要素全体の集合とする。またiは虚数単位とする。以下の問いに答えよ。
(1)$α=2$, $β=1+i$, $γ=1$のとき、 $|αβγ|$ の値を求めよ。
(2)複素数zについて、 arg z = $\displaystyle \frac{π}{8}$のとき arg(iz) の値を求めよ。
(3) α, ß, γ を Tの要素とする。このとき、$0 < |αβγ| ≦ \sqrt{5}$ を満たす α, ß, γ の
組の総数kの値を求めよ。
(4)α, ß, γをSの要素とする。このとき、$0 < |αβγ| ≦ \sqrt{5}$ および
$\displaystyle \frac{π}{8} ≦arg(αßγ) < \displaystyle \frac{5π}{8}$
を満たす α, β, yの組の総数をmとするとき、mをkで割った商と余りを求め
よ。
この動画を見る 

複素数平面の基本⑥1のn乗根をド・モアブルの定理で考える

アイキャッチ画像
単元: #複素数平面#複素数平面#数学(高校生)#数C
教材: #4STEP(4ステップ)数学#4STEP数学Ⅲ
指導講師: 理数個別チャンネル
問題文全文(内容文):
$z=\cos \frac{ 2 }{ 5 }\pi+i\sin \frac{ 2 }{ 5 }\pi$のとき、$z^4+z^3+z^2+z+1$の値を求めよ
この動画を見る 

東邦(医)正五角形の外接円と内接円の半径の比 高校数学 Japanese university entrance exam questions

アイキャッチ画像
単元: #複素数平面#複素数平面#図形への応用#数学(高校生)#数C
指導講師: 鈴木貫太郎
問題文全文(内容文):
東邦大学過去問題
正五角形の外接円、内接円の半径をそれぞれR,rとする。
$\frac{r}{R}$の値を求めよ。
この動画を見る 
PAGE TOP