福田の数学〜東京大学2025理系第6問〜複素数平面上の点の軌跡と実部の最大最小 - 質問解決D.B.(データベース)

福田の数学〜東京大学2025理系第6問〜複素数平面上の点の軌跡と実部の最大最小

問題文全文(内容文):
$\boxed{6}$

複素数平面上の点$\dfrac{1}{2}$を中心とする

半径$\dfrac{1}{2}$の円の周から原点を除いた曲線を

$C$とする。

(1)曲線$C$上の複素数$z$に対し、$\dfrac{1}{z}$の実部は

$1$であることを示せ。

(2)$\alpha,\beta$を曲線$C$上の相異なる複素数とするとき、

$\dfrac{1}{alpha^2}+\dfrac{1}{\beta^2}$がとりうる範囲を

複素数平面上に図示せよ。

(3)$\nu $を(2)で求めた範囲に属さない複素数とするとき、

$\dfrac{1}{\gamma}$の実部がとりうる値の

最大値と最小値を求めよ。

$2025$年東京大学理系過去問題
単元: #数Ⅱ#大学入試過去問(数学)#複素数平面#図形と方程式#軌跡と領域#複素数平面#学校別大学入試過去問解説(数学)#東京大学#数学(高校生)#数C
指導講師: 福田次郎
問題文全文(内容文):
$\boxed{6}$

複素数平面上の点$\dfrac{1}{2}$を中心とする

半径$\dfrac{1}{2}$の円の周から原点を除いた曲線を

$C$とする。

(1)曲線$C$上の複素数$z$に対し、$\dfrac{1}{z}$の実部は

$1$であることを示せ。

(2)$\alpha,\beta$を曲線$C$上の相異なる複素数とするとき、

$\dfrac{1}{alpha^2}+\dfrac{1}{\beta^2}$がとりうる範囲を

複素数平面上に図示せよ。

(3)$\nu $を(2)で求めた範囲に属さない複素数とするとき、

$\dfrac{1}{\gamma}$の実部がとりうる値の

最大値と最小値を求めよ。

$2025$年東京大学理系過去問題
投稿日:2025.03.02

<関連動画>

福田の数学〜早稲田大学2021年人間科学部第6問〜回転で定義された点列の極限

アイキャッチ画像
単元: #大学入試過去問(数学)#複素数平面#複素数平面#学校別大学入試過去問解説(数学)#早稲田大学#数学(高校生)#数C
指導講師: 福田次郎
問題文全文(内容文):
${\Large\boxed{6}}$ 点$M_1(0,0)$を中心に$点(1,0)$を、時計の針の回転と逆の向きを正として、$\theta$だけ回転させた点を$P_1$とする。次に$線分M_1P_1$の$中点M_2$とし、この$M_2$を中心に$点P_1$を$\theta$だけ回転させた点を$P_2$とする。同様に自然数$n$に対して、$線分M_nP_n$の$中点M_{n+1}$を中心に$点P_n$を$\theta$だけ回転させた点を$P_{n+1}$とする。$P_n$の座標を$(x_n,y_n)$とする。
$(1)\theta=\frac{\pi}{4}$のとき、$x_2=\frac{\sqrt{\boxed{\ \ タ\ \ }}}{\boxed{\ \ チ\ \ }},$$ y_2=\frac{\boxed{\ \ ツ\ \ }+\sqrt{\boxed{\ \ テ\ \ }}}{\boxed{\ \ ト\ \ }}$である。
$(2)\theta=\frac{\pi}{3}$のとき、$\lim_{n \to \infty}x_n=\boxed{\ \ ナ\ \ },$ $\lim_{n \to \infty}y_n=\frac{\sqrt{\boxed{\ \ ニ\ \ }}}{\boxed{\ \ ヌ\ \ }}$である。


2021早稲田大学人間科学部過去問
この動画を見る 

福田の数学〜千葉大学2023年第8問〜iのn乗根Part1

アイキャッチ画像
単元: #大学入試過去問(数学)#複素数平面#複素数平面#学校別大学入試過去問解説(数学)#千葉大学#数学(高校生)#数C
指導講師: 福田次郎
問題文全文(内容文):
$\Large\boxed{8}$ 実数$a$,$b$と虚数単位$i$を用いて複素数$z$が$z$=$a$+$bi$の形で表されるとき、$a$を$z$の実部、$b$を$z$の虚部と呼び、それぞれ$a$=$Re(z)$,$b$=$Im(z)$と表す。
(1)$z^3$=$i$を満たす複素数$z$をすべて求めよ。
(2)$z^{100}$=$i$を満たす複素数$z$のうち、$Re(z)$≦$\frac{1}{2}$かつ$Im(z)$≧0を満たすものの個数を求めよ。
(3)$n$を正の整数とする。$z^n$=$i$を満たす複素数$z$のうち、$Re(z)$≧$\frac{1}{2}$を満たすものの個数を$N$とする。$N$>$\frac{n}{3}$となるための$n$に関する必要十分条件を求めよ。
この動画を見る 

福田の数学〜早稲田大学理工学部2025第1問〜複素数平面上の点の軌跡と面積

アイキャッチ画像
単元: #大学入試過去問(数学)#複素数平面#複素数平面#学校別大学入試過去問解説(数学)#早稲田大学#数学(高校生)#数C
指導講師: 福田次郎
問題文全文(内容文):

$\boxed{1}$

複素数平面上で、複素数$z$が円$\vert z \vert=1$の上の点を動くとき、

$w=\left(\dfrac{1+\sqrt2}{2}\right)z+\left(\dfrac{1-\sqrt2}{2}\right)\dfrac{1}{z}$

を満たす点$w$の軌跡を$C$とする。

次の問いに答えよ。

(1)$C$はどのような図形か。複素数平面上に図示せよ。

(2)$C$と円$\left \vert z-\dfrac{2+\sqrt2}{2}\right \vert =\sqrt2$の共有点を求めよ。

(3)$C$で囲まれる領域と$\left \vert z-\dfrac{2+\sqrt2}{2}\right \vert \leqq \sqrt2$の

表す領域の共通部分の面積を求めよ。

$2025$年早稲田大学理工学部過去問題
この動画を見る 

【高校数学】数Ⅲ-18 複素数と三角形①

アイキャッチ画像
単元: #数Ⅱ#複素数と方程式#複素数平面#複素数#複素数平面#数学(高校生)#数C
指導講師: とある男が授業をしてみた
問題文全文(内容文):
複素数$\sqrt3+i,4i$が表す点をそれぞれ$P,Q$とする.
このとき,半直線$PQ$が実軸の正の向きよなす角を求めよ.
この動画を見る 

福田の数学〜早稲田大学2022年人間科学部第7問〜複素数平面上の点の軌跡

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#複素数平面#図形と方程式#円と方程式#軌跡と領域#複素数平面#図形への応用#学校別大学入試過去問解説(数学)#早稲田大学#数学(高校生)#数C
指導講師: 福田次郎
問題文全文(内容文):
${\large\boxed{7}}\ i$を虚数単位とする。$\alpha=-1+i$とし、zは次の条件をともに満たす複素数とする。
条件1.$\frac{z-\alpha}{z-\bar{\alpha}}$の実部は0である。
条件2.zの虚部は0以上である。
このとき、複素数平面上でzがとりうる値全体の集合を表す図形Cと、実軸で
囲まれる部分の面積は$\frac{\boxed{\ \ ア\ \ }}{\boxed{\ \ イ\ \ }}\pi$である。
また、$w=\frac{iz}{z+1}$で表される点wがとりうる値全体の集合を表す図形と、
図形Cで囲まれる部分の面積は$\frac{\boxed{\ \ ウ\ \ }\ \pi+\boxed{\ \ エ\ \ }}{\boxed{\ \ オ\ \ }}$である。

2022早稲田大学人間科学部過去問
この動画を見る 
PAGE TOP