数学「大学入試良問集」【4−4 組分け問題②】を宇宙一わかりやすく - 質問解決D.B.(データベース)

数学「大学入試良問集」【4−4 組分け問題②】を宇宙一わかりやすく

問題文全文(内容文):
次の各問いに答えよ。
(1)
白色、赤色、橙色、黄色、緑色、青色、藍色、紫色の同じ大きさの球が1個ずつ全部で8個ある。
これらの8個の球を2個1組として4つに分ける。
このような分け方は全部で何通りあるか。

(2)
(1)の8個の球にさらに同じ大きさの白色の球2個を付けくわえる。
これらの10個の球を2個1組として5つに分ける。
このような分け方は全部で何通りあるか。
単元: #数A#大学入試過去問(数学)#場合の数と確率#場合の数#学校別大学入試過去問解説(数学)#数学(高校生)#名古屋市立大学
指導講師: ハクシ高校【数学科】良問演習チャンネル
問題文全文(内容文):
次の各問いに答えよ。
(1)
白色、赤色、橙色、黄色、緑色、青色、藍色、紫色の同じ大きさの球が1個ずつ全部で8個ある。
これらの8個の球を2個1組として4つに分ける。
このような分け方は全部で何通りあるか。

(2)
(1)の8個の球にさらに同じ大きさの白色の球2個を付けくわえる。
これらの10個の球を2個1組として5つに分ける。
このような分け方は全部で何通りあるか。
投稿日:2021.03.30

<関連動画>

福田の数学〜慶應義塾大学2022年環境情報学部第6問〜新型ウィルス感染拡大による大学の授業形態の決定

アイキャッチ画像
単元: #数A#数Ⅱ#大学入試過去問(数学)#場合の数と確率#確率#図形と方程式#学校別大学入試過去問解説(数学)#慶應義塾大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
${\large\boxed{6}}$ある大学で来学期の授業の形式をどうするかを検討している。
授業形式の選択としては、通常の対面形式(授業形式uと呼ぶことにする)、
$\textrm{Web}$上で試料を閲覧できたり課題を行ったりできるオンデマンド形式(授業形式vと呼ぶことにする)
$\textrm{Web}$会議システムを使用するオンライン配信形式(授業形式wと呼ぶことにする)
の3つがあるとする。
また、来学期の新型ウイルスの感染状況については、
急激に拡大している状況(感染状況xと呼ぶことにする)、
ピークは過ぎたが十分な収束にはいたっていない状況(感染状況yとよぶことにする)、
ある程度収束した状況(感染状況zとよぶことにする)の3つが考えられるとする。
いま、この大学は授業形式と新型ウイルスの感染状況の組み合わせについて、
次の表(※動画参照)に示す評論値(値が高いほど評価も高い)を定めているものとする。
来学期の感染状況について、感染状況xである確率を$p_x$、
感染状況yである確率をp_y、感染状況zである確率を$p_z$とすると、
xyz空間において点$p=(p_x,p_y,p_z)は(1,0,0),(0,1,0),(0,0,1)$を頂点とする正三角形上の
点としてあらわすことができる。この正三角形上において、点pから各辺に垂線を下ろしたとき、
(1,0,0)と向かいの辺に下ろした垂線の長さをl_x、(0,1,0)と向かいの辺に下した垂線の長さを$l_y$、
(0,0,1)と向かいの辺に下した垂線の長さを$l_z$とする。
(1)このとき$p_x=\frac{\sqrt{\boxed{\ \ アイ\ \ }}}{\boxed{\ \ ウエ\ \ }}\ l_x,\ \ \ \,$
$p_y=\frac{\sqrt{\boxed{\ \ オカ\ \ }}}{\boxed{\ \ キク\ \ }}\ l_y,\ \ \ \ p_z=\frac{\sqrt{\boxed{\ \ ケコ\ \ }}}{\boxed{\ \ サシ\ \ }}\ l_z$が成り立つ。
いま、正三角形上の点$p=(p_x,p_y,p_z)$に対して、上記の評価の期待値を最大にする
授業形式のラベルをつけることにする。ただし、pによっては評価値を最大にする選択が
複数ある場合もあり、その場合にはpに複数のラベルをつけることにする。
さらに、原点と(0,1,0),(0,0,1)を原点とするyz平面上の直角二等辺三角形の頂点、辺、内部
からなるすべての点にxという感染状況のラベルをつけ、
原点と(1,0,0),(0,0,1)を原点とするxz平面上の直角二等辺三角形の頂点、辺、内部
からなるすべての点にyという感染状況のラベルをつけ、
原点と(1,0,0),(0,1,0)を原点とするxy平面上の直角二等辺三角形の頂点、辺、内部
からなるすべての点にzという感染状況のラベルをつけることにする。
すると、正三角形と3つの直角二等辺三角形からなる四面体の面上(頂点、辺も含む)
のそれぞれの点には、1つもしくは複数のラベルがつくことになる。例えば、
原点には$\left\{x,y,z\right\}$の3つのラベルがつく。
(2)このとき、正三角形の面上(頂点、辺も含む)の各点pにつけられるラベルの
可能性を列挙すると、以下の通りとなる。ただし、複数のラベルがつけられる場合には、
それぞれの中括弧内では、アルファベット順に書くものとする。空欄に入る
ラベルについて下記の選択肢から選びなさい。
単一のラベルがつく場合:$\left\{\boxed{\ \ ス\ \ }\right\},\left\{w\right\}$
2つのラベルがつく場合:$\left\{\boxed{\ \ セ\ \ },w\right\},\left\{u,\boxed{\ \ ソ\ \ }\right\},$
$\left\{\boxed{\ \ タ\ \ },y\right\},\left\{w,y\right\},\left\{\boxed{\ \ チ\ \ },z\right\}$
3つのラベルがつく場合:$\left\{\boxed{\ \ ツ\ \ },w,\boxed{\ \ テ\ \ }\right\},\left\{\boxed{\ \ ト\ \ },\boxed{\ \ ナ\ \ },\boxed{\ \ ニ\ \ }\right\}$
4つのラベルがつく場合:$\left\{u,\boxed{\ \ ヌ\ \ },\boxed{\ \ ネ\ \ },\boxed{\ \ ノ\ \ }\right\},\left\{\boxed{\ \ ハ\ \ },\boxed{\ \ ヒ\ \ },\boxed{\ \ フ\ \ },\boxed{\ \ ヘ\ \ }\right\}$

選択肢:$(1)\ \ \ u\ \ \ (2)\ \ \ v\ \ \ (3)\ \ \ w\ \ \ (4)\ \ \ x\ \ \ (5)\ \ \ y\ \ \ (6)\ \ \ z$

2022慶應義塾大学環境情報学部過去問
この動画を見る 

順列 岡山県立大 続き

アイキャッチ画像
単元: #大学入試過去問(数学)#場合の数と確率
指導講師: 鈴木貫太郎
問題文全文(内容文):
2022岡山県立大学過去問題
●n個$(n \geqq 2)$と
○3個を1列に並べる
○●〇が現れる並べ方は何通りか
*同じ色の玉は区別しない
この動画を見る 

確率 法政大

アイキャッチ画像
単元: #数A#場合の数と確率#確率#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
白$3n$個,赤$2n$個から3個同時に取り出す.
白2個赤1個である確率を$p_n$とするとき,これを解け.
$\displaystyle \lim_{n\to(x)}P_n$

法政大
この動画を見る 

直感で出せ!計算不要⁉️面白い確率の問題

アイキャッチ画像
単元: #数A#場合の数と確率#確率#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
100人乗りの飛行機。

100人の乗客たちは自分の座席番号が書かれた券を持つ。
搭乗1人目の客が券を紛失し勝手に選だ席に座った。
2人目以降は自分の席が空いているならそこに座り、
そうでないなら空席をランダムに選んで座る。
このとき、最後の乗客が本来の自分の席に座れる確率は?
この動画を見る 

2023一橋大 確率

アイキャッチ画像
単元: #数A#大学入試過去問(数学)#場合の数と確率#確率#学校別大学入試過去問解説(数学)#一橋大学#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
A,B,Cの3人が順番にサイコロを振り,最初に1を出した人が勝ち,
だれかが1を出すか、全員がn回ずつ振ったら終了
A,B,Cそれぞれが勝つ確率$P_A,P_B,P_C$を求めよ.

2023一橋大過去問
この動画を見る 
PAGE TOP