04兵庫県教員採用試験(数学:2番 数列と帰納法) - 質問解決D.B.(データベース)

04兵庫県教員採用試験(数学:2番 数列と帰納法)

問題文全文(内容文):
$a_1=\frac{1}{2}$ , $a_{n+1}=\frac{1}{2-a_n}$
一般項$a_n$を求めよ
単元: #数列#漸化式#数学的帰納法#その他#数学(高校生)#数B#教員採用試験
指導講師: ますただ
問題文全文(内容文):
$a_1=\frac{1}{2}$ , $a_{n+1}=\frac{1}{2-a_n}$
一般項$a_n$を求めよ
投稿日:2020.11.14

<関連動画>

福島県立医大 4項間漸化式

アイキャッチ画像
単元: #大学入試過去問(数学)#数列#漸化式#学校別大学入試過去問解説(数学)#数学(高校生)#福島大学#数B
指導講師: 鈴木貫太郎
問題文全文(内容文):
$x^3-3x^2-27x-27=0$の3つの解を$\alpha,\beta,\gamma$
$A_n=\alpha^n+\beta^n+\gamma^n$

(1)
$A_{n+3}$を$A_{n+2},A_{n+1},A_n$で表せ

(2)
$A_n$は$3^n$の倍数であることを示せ

出典: 福島県立医科大学 過去問
この動画を見る 

福田の数学〜千葉大学2022年理系第7問〜不定方程式の自然数解と漸化式で与えられた数列

アイキャッチ画像
単元: #数A#大学入試過去問(数学)#整数の性質#ユークリッド互除法と不定方程式・N進法#数列#数列とその和(等差・等比・階差・Σ)#漸化式#学校別大学入試過去問解説(数学)#千葉大学#数学(高校生)#数B
指導講師: 福田次郎
問題文全文(内容文):
$x,y$についての方程式
$x^2-6xy+y^2=9  \ldots\ldots(*)$
に関する次の問いに答えよ。
(1)$x,y$がともに正の整数であるような(*)の解のうち、yが最小であるものを
求めよ。
(2)数列$a_1,a_2,a_3,\ldots$が漸化式
$a_{n+2}-6a_{n+1}+a_n=0  (n=1,2,3,\ldots)$
を満たすとする。このとき、$(x,y)=(a_{n+1},a_n)$が(*)を満たすならば、
$(x,y)=(a_{n+2},a_{n+1})$も(*)を満たすことを示せ。
(3)(*)の整数解(x,y)は無数に存在することを示せ。

2022千葉大学理系過去問
この動画を見る 

福田の数学〜明治大学2022年全学部統一入試12AB第3問〜漸化式の図形への応用

アイキャッチ画像
単元: #大学入試過去問(数学)#図形の性質#周角と円に内接する四角形・円と接線・接弦定理#数列#漸化式#学校別大学入試過去問解説(数学)#明治大学#数学(高校生)#数B
指導講師: 福田次郎
問題文全文(内容文):
(1)三角形$ABC$の内接円が辺$AB$と接する点をPとし、
辺$BC$と接する点を$Q$とし、辺$CA$と接する点をRとする。
$\angle A$の大きさを$θ$とすると、$\angle APR=\boxed{ア}$であり、
$\angle PQR=\boxed{ア}$である。

$\boxed{ア}$の解答群
$⓪0 ①\frac{\pi}{2} ②θ ③\frac{θ}{2} ④\frac{\pi}{2}-θ ⑤\frac{\pi-θ}{2}$
$⑥\pi-\frac{θ}{2} ⑦\pi-θ ⑧\frac{\pi-3θ}{2} ⑨\frac{\pi}{2}-3θ$

(2)三角形$T_1$の3つの角のうち、角の大きさが最小のものは$\frac{\pi}{6}$で、
最大のものは$\frac{\pi}{2}$であるとする。
$n=1,\ 2,\ 3,\ ...$について、三角形$T_n$の内接円を$O_n$とし、
$T_n$と$O_n$とが接する3つの点を頂点とするような三角形を$T_{n+1}$とする。
このとき、三角形$T_2$の3つの角のうち、
角の大きさが最小のものは$\frac{\pi}{\boxed{イ}}$で、
最大のものは$\frac{\boxed{ウ}\ \pi}{\boxed{エオ}}$である。
$n=1,\ 2,\ 3,\ ...$について、三角形$T_n$の3つの角のうち、
角の大きさが最小のものを$a_n$とし、最大のものを$b_n$とする。三角形$T_{n+1}$について、
$a_{n+1}=\boxed{カ},\ \ \ b_{n+1}=\boxed{キ}$
と表せる。この式より
$a_n+b_n=\frac{\boxed{ク}}{\boxed{ケ}}\pi,$
$b_n-a_n=\frac{\pi}{\boxed{コ}・\boxed{サ}^{n-1}}$
であり、$a_n=\frac{\pi}{\boxed{シ}}(1-\frac{1}{\boxed{ス}^n}) $である。

$\boxed{カ}、\boxed{キ}$の解答群
$⓪\frac{a_n}{2} ①\frac{b_n}{2} ②\frac{\pi}{2}-a_n ③\frac{\pi}{2}-b_n ④\frac{\pi-a_n}{2}$
$⑤\frac{\pi-b_n}{2} ⑥\pi-\frac{a_n}{2} ⑦\pi-\frac{b_n}{2} ⑧\pi-a_n ⑨\pi-b_n$

2022明治大学全統過去問
この動画を見る 

【高校数学】 数B-80 いろいろな数列の和①

アイキャッチ画像
単元: #数列#数列とその和(等差・等比・階差・Σ)#数学(高校生)#数B
指導講師: とある男が授業をしてみた
問題文全文(内容文):
次の数列の初項から第$n$項までの和を求めよう.

①$3,5・2,7・2^2,9・2^3・・・$

②$x\neq 1$のとき,$1,3x,5x^2,7x^3,・・・$
この動画を見る 

【数B】数列:漸化式と数学的帰納法:三項間漸化式 PRIME B 85(1)

アイキャッチ画像
単元: #数列#漸化式#数学(高校生)
教材: #PRIME数学#PRIME数学Ⅱ・B#中高教材
指導講師: 理数個別チャンネル
問題文全文(内容文):
次のように定められた数列${a_n}$の一般項を求めよ。
$a_1=1$,$a_2=2$,$a_{n+2}=4a_{n+1}-3a_{n}$
この動画を見る 
PAGE TOP