福田の数学〜慶應義塾大学2024年医学部第1問(2)〜楕円の接線とx軸y軸で作る三角形の面積の最小 - 質問解決D.B.(データベース)

福田の数学〜慶應義塾大学2024年医学部第1問(2)〜楕円の接線とx軸y軸で作る三角形の面積の最小

問題文全文(内容文):
$\Large\boxed{1}$ (2)座標平面の第1象限の点(X,Y)において楕円$\frac{x^2}{3}$+$\frac{y^2}{2}$=1 に接する直線を$l$とすると、$l$の傾きは$\boxed{\ \ (お)\ \ }$である。また、原点をO、$l$と$x$軸, $y$軸との交点をそれぞれP, Qとすると、三角形OPQの面積は(X,Y)=($\boxed{\ \ (か)\ \ }$, $\boxed{\ \ (き)\ \ }$)のときに最小値$\boxed{\ \ (く)\ \ }$をとる。
単元: #大学入試過去問(数学)#慶應義塾大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
$\Large\boxed{1}$ (2)座標平面の第1象限の点(X,Y)において楕円$\frac{x^2}{3}$+$\frac{y^2}{2}$=1 に接する直線を$l$とすると、$l$の傾きは$\boxed{\ \ (お)\ \ }$である。また、原点をO、$l$と$x$軸, $y$軸との交点をそれぞれP, Qとすると、三角形OPQの面積は(X,Y)=($\boxed{\ \ (か)\ \ }$, $\boxed{\ \ (き)\ \ }$)のときに最小値$\boxed{\ \ (く)\ \ }$をとる。
投稿日:2024.06.22

<関連動画>

東京学芸大 対数方程式の実数解の個数 Mathematics Japanese university entrance exam

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#指数関数と対数関数#対数関数#学校別大学入試過去問解説(数学)#数学(高校生)#東京学芸大学
指導講師: 鈴木貫太郎
問題文全文(内容文):
$log_{2}(x+3)+2log_{2}(3-x)=a$
実数解の個数

出典:1996年東京学芸大学 過去問
この動画を見る 

東工大 秀才栗崎 Mathematics Japanese university entrance exam

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#微分法と積分法#接線と増減表・最大値・最小値#微分とその応用#関数の変化(グラフ・最大最小・方程式・不等式)#学校別大学入試過去問解説(数学)#東京工業大学#数学(高校生)#数Ⅲ
指導講師: 鈴木貫太郎
問題文全文(内容文):
$\displaystyle \frac{x^2-2x+k^2}{x^2+2x+k^2}(k \geqq 0)$が1以外の整数値をとらないような定数$k$の範囲は?

出典:1992年東京工業大学 過去問
この動画を見る 

福田の1.5倍速演習〜合格する重要問題086〜慶應義塾大学2020年度医学部第1問(1)〜平面と平面のなす角

アイキャッチ画像
単元: #大学入試過去問(数学)#空間ベクトル#空間ベクトル#学校別大学入試過去問解説(数学)#慶應義塾大学#数学(高校生)#数C
指導講師: 福田次郎
問題文全文(内容文):
$\Large\boxed{1}$ (1)座標空間に3点O(0,0,0), A(1,0,a), B(0,1,b)をとり、O,A,Bによって定められる平面をαとする。ただし、a>0, b>0とする。平面αとxy平面との交線をlとすると、lはOを通り、ベクトル$\overrightarrow{u}$=(1, $\boxed{あ}$,0)に平行な直線である。また平面αとxy平面のなす角をθ(ただし0≦θ≦$\frac{\pi}{2}$)とすると、$\cos\theta$=$\boxed{\ \ い\ \ }$である。

2020慶應義塾大学医学部過去問
この動画を見る 

大学入試問題#806「The 良問!」 兵庫県立大学中期(2014) #微積の応用

アイキャッチ画像
単元: #大学入試過去問(数学)#学校別大学入試過去問解説(数学)#数学(高校生)#兵庫県立大学
指導講師: ますただ
問題文全文(内容文):
微分可能な関数$f(x)$が
$f(x)=\displaystyle \int_{0}^{x} \sqrt{ f(t)^2+1 }\ dt$を満たすとする。
このとき以下の問いに答えよ。
1.$f'(x)$と$f''(x)$を$f(x)$で表せ。
2.関数$log(f(x)+f'(x))$を求めよ。
3.$f(x)$を求めよ。

出典:2014年兵庫県立大学中期 入試問題
この動画を見る 

早稲田大(商)複素数

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#複素数と方程式#複素数#学校別大学入試過去問解説(数学)#早稲田大学#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
$f(x)=(x^2+x+2)^{99}$
$=a_0+a_1x+a_2x^2+a_3x^3+…+a_{198}x^{198}$
$x^2+x+1=0$の1つの解を$\omega$とする

(2)
$f(\omega)$の値を求めよ

(2)
$S=\displaystyle \sum_{k=0}^{66} a_{3k}=a_0+a_3+a_6+…+a_{198}$

出典:1999年早稲田大学 商学部 過去問
この動画を見る 
PAGE TOP