もはやパズル!!三平方の定理禁止!!大阪教育大附属天王寺中 - 質問解決D.B.(データベース)

もはやパズル!!三平方の定理禁止!!大阪教育大附属天王寺中

問題文全文(内容文):
A + B = ▢ ㎠
*図は動画内参照

大阪教育大学付属天王寺中学校
単元: #数A#図形の性質#三角形の辺の比(内分・外分・二等分線)#数学(高校生)
指導講師: 数学を数楽に
問題文全文(内容文):
A + B = ▢ ㎠
*図は動画内参照

大阪教育大学付属天王寺中学校
投稿日:2023.04.18

<関連動画>

【数A】【整数の性質】素因数分解を利用する問題 ※問題文は概要欄

アイキャッチ画像
単元: #数A#整数の性質#ユークリッド互除法と不定方程式・N進法#数学(高校生)
教材: #4S数学#4S数学Ⅰ+AのB問題解説(新課程2022年以降)#整数の性質#中高教材
指導講師: 理数個別チャンネル
問題文全文(内容文):
次のような自然数の個数を求めよ。
(1)108以下の自然数で,108と互いに素である自然数
(2)600以下の自然数で,600と互いに素である自然数

(1)1から240までの240個の自然数の積N=1・2・3・・・240について,Nを素因数分解したとき,素因数3の個数を求めよ。
(2)1から450までの450個の自然数の積N=1・2・3・・・450について,Nを素因数分解したとき,素因数7の個数を求めよ。

次のような自然数の積Nを計算すると,末尾には0が連続して何個並ぶか
(1)1から125までの125個の自然数の積N=1・2・3・・・125
(2)1から300までの300個の自然数の積N=1・2・3・・・300
この動画を見る 

福田の数学〜慶應義塾大学2024年商学部第4問〜くじ引きと条件付き確率

アイキャッチ画像
単元: #数A#場合の数と確率#確率#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
$\Large\boxed{4}$ あるくじ引き店には、くじが10本入っている箱が5箱ある。5箱のうち4箱には当たりくじが1本、はずれくじが9本入っており、この4箱を「通常の箱」と呼ぶ。また、残りの1箱には当たりくじが5本、はずれくじが5本入っており、この箱を「有利な箱」と呼ぶ。通常の箱と有利な箱は見た目は同じであり、見分けることはできない。
(i)まず、Aが店に入り、5箱のうちの1箱を無作為に選び、その箱からくじを1本引いた。Aの選んだ箱が通常の箱であり、かつ、引いたくじがはずれである確率は$\frac{\boxed{アイ}}{\boxed{ウエ}}$である。また、Aの選んだ箱が有利な箱であり、かつ、引いたくじがはずれである確率は$\frac{\boxed{オ}}{\boxed{カキ}}$である。したがって、Aの引いたくじがはずれであったときに、Aの選んだ箱が有利な箱である確率は$\frac{\boxed{ク}}{\boxed{ケコ}}$である。
(ii)(i)の後、Aは引いたくじをもとの箱に戻し、よくかき混ぜたあと、同じ箱からもう一度くじを1本引いた。Aの引いたくじが1回目、2回目ともにはずれであったときに、Aの選んだ箱が有利な箱である確率は$\frac{\boxed{サシ}}{\boxed{スセソ}}$である。
(iii)(ii)の後、Aは引いたくじをもとの箱に戻して店を出た。その後、BとCが店に入った。Bは5箱のうち1箱を無作為に選び、CはBが選ばなかった4箱の中から1箱を無作為に選んだ。BはAと同じように、自分の選んだ箱からくじを1本引き、それをもとの箱に戻し、よくかき混ぜた後、同じ箱からもう一度くじを1本引いた。また、Cは自分の選んだ箱からくじを1本引いた。Bの引いたくじが1回目、2回目ともにはずれであり、かつ、Cが引いたくじが当たりであったときに、Bの選んだ箱が有利な箱である確率は$\frac{\boxed{タチ}}{\boxed{ツテト}}$であり、Cの選んだ箱が有利な箱である確率は$\frac{\boxed{ナニヌ}}{\boxed{ネノハ}}$である。
この動画を見る 

兵庫医大 普通の基本問題 指数方程式

アイキャッチ画像
単元: #数A#整数の性質#ユークリッド互除法と不定方程式・N進法#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
$4^x-2^{x+2}+a^2-3a+4=0$が異なる2つの正の解をもつ$a$の範囲を求めよ.

2019兵庫医大過去問
この動画を見る 

光文社新書「中学の知識でオイラー公式がわかる」Vol.19 ド・モアブルの定理によるアプローチ

アイキャッチ画像
単元: #数A#図形の性質#周角と円に内接する四角形・円と接線・接弦定理#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
ド・モアブルの定理によるアプローチ
$(\cos\theta+i \sin\theta)^n=\cos n \theta +i \sin n \theta$
この動画を見る 

数学オリンピック予選 合同式の「割り算‼️」

アイキャッチ画像
単元: #数A#数学検定・数学甲子園・数学オリンピック等#整数の性質#約数・倍数・整数の割り算と余り・合同式#数学オリンピック#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
${}_{40}\mathrm{C}_{20}$を41で割った余りを求めよ.

数学オリンピック過去問
この動画を見る 
PAGE TOP