数学「大学入試良問集」【18−3 n次導関数と漸化式】を宇宙一わかりやすく - 質問解決D.B.(データベース)

数学「大学入試良問集」【18−3 n次導関数と漸化式】を宇宙一わかりやすく

問題文全文(内容文):
$x \gt 0$に対し、$f(x)=\displaystyle \frac{log\ x}{x}$とする。
(1)
$n=1,2,・・・$に対し、$f(x)$の第$n$次導関数は、数列$\{a_n\},\{b_n\}$を用いて$f^{(n)}(x)=\displaystyle \frac{a_n+b_n log\ x}{x^{n+1}}$と表されることを示し、$a_n,b_n$に関する漸化式を求めよ。

(2)
$h_n=\displaystyle \sum_{k=1}^n\displaystyle \frac{1}{k}$とおく。
$h_n$を用いて$a_n,b_n$の一般項を求めよ。
単元: #大学入試過去問(数学)#学校別大学入試過去問解説(数学)#東京大学#数学(高校生)
指導講師: ハクシ高校【数学科】良問演習チャンネル
問題文全文(内容文):
$x \gt 0$に対し、$f(x)=\displaystyle \frac{log\ x}{x}$とする。
(1)
$n=1,2,・・・$に対し、$f(x)$の第$n$次導関数は、数列$\{a_n\},\{b_n\}$を用いて$f^{(n)}(x)=\displaystyle \frac{a_n+b_n log\ x}{x^{n+1}}$と表されることを示し、$a_n,b_n$に関する漸化式を求めよ。

(2)
$h_n=\displaystyle \sum_{k=1}^n\displaystyle \frac{1}{k}$とおく。
$h_n$を用いて$a_n,b_n$の一般項を求めよ。
投稿日:2021.07.01

<関連動画>

九州大 数式

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#式と証明#恒等式・等式・不等式の証明#学校別大学入試過去問解説(数学)#数学(高校生)#九州大学
指導講師: 鈴木貫太郎
問題文全文(内容文):
$\displaystyle \frac{x+y}{2}=\displaystyle \frac{y+z}{3}=\displaystyle \frac{z+x}{7}$
すべての実数$x,y,z$でつねに$x^2+y^2+z^2+a(x+y+z) \gt -1$となるような$a$の範囲は?

出典:1962年九州大学 過去問
この動画を見る 

千葉大 複素数 極形式 7乗根

アイキャッチ画像
単元: #大学入試過去問(数学)#複素数と方程式#複素数#学校別大学入試過去問解説(数学)#千葉大学
指導講師: 鈴木貫太郎
問題文全文(内容文):
$\alpha=\cos \displaystyle \frac{2}{7}\pi+i \sin \displaystyle \frac{2}{7}\pi$

(1)
$\alpha+\alpha^2+\alpha^3+\alpha^4+\alpha^5+\alpha^6$

(2)
$(1-\alpha)(1-\alpha^2)(1-\alpha^3)(1-\alpha^4)$
$(1-\alpha^5)(1-\alpha^6)$

(1)(2)それぞれ値を求めよ

出典:千葉大学 過去問
この動画を見る 

福田の数学〜定積分で表された関数の標準問題〜慶應義塾大学2023年環境情報学部第2問〜定積分で表された関数と共通接線

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#微分法と積分法#学校別大学入試過去問解説(数学)#不定積分・定積分#慶應義塾大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
関数f(x)が
$f(x)=-2x^2\displaystyle \int_{0}^{ 1 } f(t) dt-12x+\dfrac{2}{9}\displaystyle \int_{-1}^{ 0 } f(t) dt$

$g(x)=\displaystyle \int_{0}^{ 1 } (3x^2+t)g(t)dt-\dfrac{3}{4}$
を満たしている。このとき
$f(x)=\fbox{ア}x^2-12x+\fbox{イ},g(x)=\fbox{ウ}x^2+\fbox{エ}$
である。またxy平面上のy=f(x)とy=g(x)のグラフの共通接戦は$y=\fbox{オ}x+\dfrac{\fbox{カ}}{\fbox{キ}}$
である。なお、nを0または生の整数としたとき、$x^n$の不定積分は
$\displaystyle \int_{}^{}x^ndx=\dfrac{1}{n+1}x^{n+1}+C$(Cは積分定数)である。
この動画を見る 

大学入試問題#198 東京理科大学2010 定積分

アイキャッチ画像
単元: #大学入試過去問(数学)#積分とその応用#定積分#学校別大学入試過去問解説(数学)#東京理科大学#数学(高校生)#数Ⅲ
指導講師: ますただ
問題文全文(内容文):
$\displaystyle \int_{0}^{1}\displaystyle \frac{2x+2}{x^2+x+1}\ dx$を計算せよ。

出典:2010年東京理科大学 入試問題
この動画を見る 

関西医科大学 2011 極限

アイキャッチ画像
単元: #大学入試過去問(数学)#学校別大学入試過去問解説(数学)#数学(高校生)#関西医科大学
指導講師: ますただ
問題文全文(内容文):
$\displaystyle \lim_{ x \to \pi } \displaystyle \frac{\sin\ x}{x^2-\pi^2}$

出典:2011年関西医科大学
この動画を見る 
PAGE TOP