中2数学「乗法と除法の混じった計算」【毎日配信】 - 質問解決D.B.(データベース)

中2数学「乗法と除法の混じった計算」【毎日配信】

問題文全文(内容文):
例題
次の計算をしなさい.

(1)$8ab\times (-7a)\div 4b$
(2)$18x^2y\div 2xy\div (-6xy^2)$
(3)$ab^2\div (-2b)^2\div 120$
(4)$\dfrac{2}{3}x^2\div \left(-\dfrac{1}{6}y\right)\times xy$
(5)$-\dfrac{3}{4}a^2b^3\times\dfrac{9}{2}ab^5\div\left(-\dfrac{3}{2}ab^2\right)^3$
単元: #数学(中学生)#中2数学#式の計算(単項式・多項式・式の四則計算)
指導講師: 中学受験算数・高校受験数学けいたくチャンネル
問題文全文(内容文):
例題
次の計算をしなさい.

(1)$8ab\times (-7a)\div 4b$
(2)$18x^2y\div 2xy\div (-6xy^2)$
(3)$ab^2\div (-2b)^2\div 120$
(4)$\dfrac{2}{3}x^2\div \left(-\dfrac{1}{6}y\right)\times xy$
(5)$-\dfrac{3}{4}a^2b^3\times\dfrac{9}{2}ab^5\div\left(-\dfrac{3}{2}ab^2\right)^3$
投稿日:2021.05.10

<関連動画>

【数学】中2-7 単項式の乗法・除法

アイキャッチ画像
単元: #数学(中学生)#中2数学#式の計算(単項式・多項式・式の四則計算)
指導講師: とある男が授業をしてみた
問題文全文(内容文):
暗算ができないときは、長~い①____を使う!
そのときに、②____のすぐ後ろの項
を③____にするのを忘れないでね!!

④$5x \times (-2y)=$
⑤$-32xy \div (-4y)=$
⑥$\displaystyle \frac{1}{2}x \times \displaystyle \frac{4}{3}x=$
⑦$10a^2 \div (-2a^2)=$
⑧$(-5x)^2=$
⑨$-(5x)^2=$
⑩$6x^2y \div \displaystyle \frac{3}{2}xy=$
【ポイント】
$\displaystyle \frac{3}{2}xy$は⑪____と同じ!!

⑫$-5x^2 \div 10x \times (-4x)=$
⑬$\displaystyle \frac{2}{3}xy^2 \div \displaystyle \frac{1}{9}xy \div 2x=$
⑭$(-2x) \times (-3y) \times (-4xy)=$
⑮$(-2a)^2 \times (-4b) \div \displaystyle \frac{8}{5}ab=$
この動画を見る 

中2数学「分数のいろいろな計算」【毎日配信】

アイキャッチ画像
単元: #数学(中学生)#中2数学#式の計算(単項式・多項式・式の四則計算)
指導講師: 中学受験算数・高校受験数学けいたくチャンネル
問題文全文(内容文):
例題
次の計算をしなさい.

(1)$\dfrac{1}{5}(2a-b)+\dfrac{1}{2}(-a+3b)$
(2)$\dfrac{1}{4}(3x-y)-\dfrac{1}{3}(x-5y)$
(3)$\dfrac{2a-b}{3}+\dfrac{a+4b}{2}$
(4)$\dfrac{x-3y}{4}-\dfrac{2x-y}{3}$
この動画を見る 

中2数学「式による説明②(連続する数)」【毎日配信】

アイキャッチ画像
単元: #数学(中学生)#中2数学#式の計算(単項式・多項式・式の四則計算)
指導講師: 中学受験算数・高校受験数学けいたくチャンネル
問題文全文(内容文):
中二~第十回 式による説明②~

例題
連続する3つの整数の和は、3の倍数になることを説明しなさい。
この動画を見る 

高等学校入学試験予想問題:三重県公立高等学校~全部入試問題

アイキャッチ画像
単元: #数学(中学生)#中2数学#中3数学#式の計算(単項式・多項式・式の四則計算)#1次関数#2次関数#円
指導講師: 高校入試から見た数学の世界「全部入試問題」by しろたん
問題文全文(内容文):
$ \boxed{1}$
(1)$ -1+4\div \dfrac{2}{3}$
(2)$ 3(2a+5b)-(a+2b)$
(3)$ (x-2)(x+2)+(x-1)(x+4)$
(4)$ x^2+5x+3=0 $

$ \boxed{2}$
(1)点Pの座標は?
(2)y軸上に点Q,Qのy座標をt($ t \gt 4 $)とする.
Qを通り,x軸に平行な直線とb,mの交点をR,Sとする.
①t=6のとき,$ \triangle PRS $は?
②$ \triangle PRS $の面積が$ \triangle ABP $の5倍であるとき,tは?

$ \boxed{3}$
円周上にA,B,C,D,Eがある.
$AC=AE$,$\stackrel{\huge\frown}{BC}$=$\stackrel{\huge\frown}{DE}$であり,交点$ F,G$である.
(1)$ \triangle ABC \equiv \triangle AGE $を証明せよ.
(2)$ AB=4 $cm,$ AE=6$cm,$ DG=3 $cmのとき,
①$ AF=? $
②$ \triangle ABG $と$ \triangle CEF $の面積比を求めよ.
この動画を見る 

気づけるか? 三重高校

アイキャッチ画像
単元: #数学(中学生)#中2数学#式の計算(単項式・多項式・式の四則計算)#高校入試過去問(数学)
指導講師: 数学を数楽に
問題文全文(内容文):
$65^2-4 \times 2015 + 4 \times 31^2$

三重高等学校
この動画を見る 
PAGE TOP