京都大 三次関数 積分 - 質問解決D.B.(データベース)

京都大 三次関数 積分

問題文全文(内容文):
$f(x)=x^3-6x^2+8$

$0 \leqq x \leqq r$における$|f(x)|$の最大値を$M(r)$とする。

$\displaystyle \int_{0}^{5} M(r) dr$を求めよ

出典:1966年京都大学 過去問
単元: #大学入試過去問(数学)#学校別大学入試過去問解説(数学)#京都大学#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
$f(x)=x^3-6x^2+8$

$0 \leqq x \leqq r$における$|f(x)|$の最大値を$M(r)$とする。

$\displaystyle \int_{0}^{5} M(r) dr$を求めよ

出典:1966年京都大学 過去問
投稿日:2019.09.05

<関連動画>

大学入試問題#62 横浜国立大学(2003) 定積分

アイキャッチ画像
単元: #大学入試過去問(数学)#積分とその応用#定積分#学校別大学入試過去問解説(数学)#横浜国立大学#数学(高校生)#数Ⅲ
指導講師: ますただ
問題文全文(内容文):
$\displaystyle \int_{1}^{e}5^{log\ x}dx$を計算せよ。

出典:2003年横浜国立大学 入試問題
この動画を見る 

岩手大 滋賀大 三次関数と直線 3次方程式整数解 高校数学 Mathematics Japanese university entrance exam

アイキャッチ画像
単元: #数A#数Ⅱ#大学入試過去問(数学)#式と証明#整数の性質#約数・倍数・整数の割り算と余り・合同式#整式の除法・分数式・二項定理#微分とその応用#関数の変化(グラフ・最大最小・方程式・不等式)#学校別大学入試過去問解説(数学)#数学(高校生)#岩手大学#数Ⅲ
指導講師: 鈴木貫太郎
問題文全文(内容文):
岩手大学過去問題
$f(x)=x^3-3x-1$
$f(x)=3ax+15$の解の個数

滋賀大学過去問題
n自然数、P素数
$x^3+nx^2-(5-n)x+P=0$
の1つの解が自然数である。この方程式を解け
この動画を見る 

1の三乗根 ω

アイキャッチ画像
単元: #数A#大学入試過去問(数学)#整数の性質#約数・倍数・整数の割り算と余り・合同式#学校別大学入試過去問解説(数学)#数学(高校生)
指導講師: 数学を数楽に
問題文全文(内容文):
1の3乗根のうち虚数であるものの1つをωとすると
$ω^4+ω^3 + 3ω^2 + 2ω +1 =?$
名城大学
この動画を見る 

山梨大 順列の証明

アイキャッチ画像
単元: #数A#大学入試過去問(数学)#場合の数と確率#場合の数#学校別大学入試過去問解説(数学)#山梨大学#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
2019年 山梨大学 過去問

赤玉$p$個,青玉$q$個,白玉$r$個
合計$n$個を1列に並べてできる順列の総数が
$\frac{n!}{p!f!r!}$であることを証明せよ。
この動画を見る 

福田の数学〜青山学院大学2022年理工学部第5問〜切り取られる弦の中点の軌跡

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#図形と方程式#軌跡と領域#積分とその応用#面積・体積・長さ・速度#学校別大学入試過去問解説(数学)#数学(高校生)#数Ⅲ#青山学院大学
指導講師: 福田次郎
問題文全文(内容文):
xy平面上に、円$C:(x-5)^2+y^2=5$と直線$l:y=mx$がある。
(1)Cとlが共有点を持つようなmの値の範囲を求めよ。
mの値が(1)で求めた範囲にあるとき、Cとlの2つの共有点をP,Qとし、
線分PQの中点をMとする。ただし、lがCに接するときはP=Q=Mとする。
(2)点Mの座標をmを用いて表せ。
(3)mが(1)で求めた範囲を動くときの点Mの軌跡を求め、図示せよ。
(4)原点からCに引いた2本の接線と(3)で求めた点Mの軌跡で囲まれた図形を
Dとする。図形Dをx軸の周りに1回転してできる回転体の体積Vを求めよ。

2022青山学院大学理工学部過去問
この動画を見る 
PAGE TOP