京都大 三次関数 積分 - 質問解決D.B.(データベース)

京都大 三次関数 積分

問題文全文(内容文):
$f(x)=x^3-6x^2+8$

$0 \leqq x \leqq r$における$|f(x)|$の最大値を$M(r)$とする。

$\displaystyle \int_{0}^{5} M(r) dr$を求めよ

出典:1966年京都大学 過去問
単元: #大学入試過去問(数学)#学校別大学入試過去問解説(数学)#京都大学#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
$f(x)=x^3-6x^2+8$

$0 \leqq x \leqq r$における$|f(x)|$の最大値を$M(r)$とする。

$\displaystyle \int_{0}^{5} M(r) dr$を求めよ

出典:1966年京都大学 過去問
投稿日:2019.09.05

<関連動画>

#筑波大学(2016) #定積分 #Shorts

アイキャッチ画像
単元: #大学入試過去問(数学)#学校別大学入試過去問解説(数学)#数学(高校生)#筑波大学
指導講師: ますただ
問題文全文(内容文):
$\displaystyle \int_{\frac{\pi}{6}}^{\frac{\pi}{3}} \tan^3x\ dx$

出典:2016年筑波大学
この動画を見る 

信州大(医)多項式

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#図形と方程式#円と方程式#軌跡と領域#学校別大学入試過去問解説(数学)#数学(高校生)#信州大学
指導講師: 鈴木貫太郎
問題文全文(内容文):
実数$x,y$が
$2^4-2x^3y-3x^3+3x^2y-xy+y^2+x-y=0$を満たすとき、$x^2+y^2-4y+4$の最小値は?

出典:信州大学医学部 過去問
この動画を見る 

大学入試問題#806「The 良問!」 兵庫県立大学中期(2014) #微積の応用

アイキャッチ画像
単元: #大学入試過去問(数学)#学校別大学入試過去問解説(数学)#数学(高校生)#兵庫県立大学
指導講師: ますただ
問題文全文(内容文):
微分可能な関数$f(x)$が
$f(x)=\displaystyle \int_{0}^{x} \sqrt{ f(t)^2+1 }\ dt$を満たすとする。
このとき以下の問いに答えよ。
1.$f'(x)$と$f''(x)$を$f(x)$で表せ。
2.関数$log(f(x)+f'(x))$を求めよ。
3.$f(x)$を求めよ。

出典:2014年兵庫県立大学中期 入試問題
この動画を見る 

微分の超頻出の問題!どこで最大値を取るかしっかり考えよう【大阪大学】【数学 入試問題】

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#指数関数と対数関数#微分法と積分法#対数関数#学校別大学入試過去問解説(数学)#大阪大学#数学(高校生)
指導講師: 数学・算数の楽しさを思い出した / Ken
問題文全文(内容文):
正の実数a,xに対して,

y=$(\log_{\frac{1}{2}}x)^{3}$+$a(\log_{\sqrt{ 2 } } x)(\log_{4} x^{3})$とする。

(1)t=$\log_{ 2 } x$とするとき,yをa,tを用いて表せ。

(2)xが$\dfrac{1}{2}$≦x≦8の範囲を動くとき,yの最大値Mをaを用いて表せ。

大阪大過去問
この動画を見る 

東工大 整数問題

アイキャッチ画像
単元: #大学入試過去問(数学)#学校別大学入試過去問解説(数学)#東京工業大学#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
$n$は3以上の奇数
$a_n=\displaystyle \frac{1}{6}\displaystyle \sum_{k=1}^{n-1}(k-1)k(k+1)$

$b_n=\displaystyle \frac{n^2-1}{8}$

(1)
$a_n,b_n$は整数

(2)
$a_n-b_n$は4の倍数

出典:2014年東京工業大学 過去問
この動画を見る 
PAGE TOP